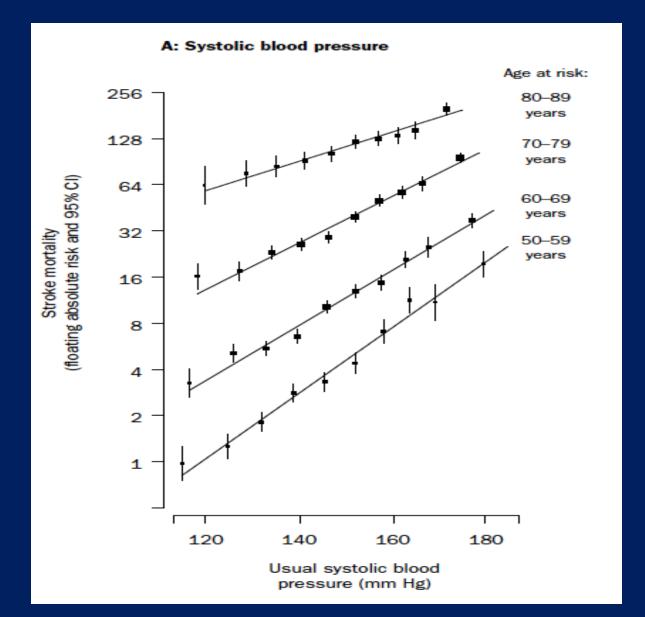
An Update of the Systolic Blood Pressure Intervention Trial SPRINT

Horner Lecture September 22, 2023

Karen C. Johnson, MD, MPH
Chair and Endowed Professor, Department of Preventive Medicine
University of Tennessee Health Science Center
Memphis, Tennessee

Presenter Disclosure Information Karen C. Johnson, MD, MPH


FINANCIAL DISCLOSURE: Nothing to disclose

The content does not necessarily represent the official views of the SPRINT Steering Committees, the NIH, or the US government.

A QUICK WORD FROM OUR SPONSORS

- Funded by NHLBI, NIDDK, NIA, NINDS, under Contract Numbers HHSN268200900040C, HHSN268200900046C, HHSN268200900047C, HHSN268200900048C, HHSN268200900049C, and Inter-Agency Agreement Number A-HL-13-002-001
- Resources and use of facilities through the Department of Veterans
 Affairs
- Support from a number of CTSAs funded by NCATS
- Contribution of study medications (azilsartan and azilsartan/ chlorthalidone) from Takeda Pharmaceuticals International, Inc.

SBP vs Stroke Mortality Risk Relationship

- At all ages there is no apparent SBP threshold
- Stroke mortality risk doubles for every 20/10 mm Hg increase above 115/75
- 20 mm Hg increase in systolic BP associated with a 10-fold larger annual absolute stroke risk in age 80s vs. age 50s.

Lewington et al. *Lancet*. 2002;360:1903-1913.

SPRINT Research Question

Will CVD composite event rate be lower in intensive compared to standard SBP treatment (N = 9,361)?

Randomized Controlled Trial Target Systolic BP

Intensive Treatment Goal SBP < 120 mm Hg

FU Time 3.33 years

Standard Treatment Goal SBP < 140 mm Hg

SPRINT design details available at:

- ClinicalTrials.gov (NCT01206062)
- Ambrosius WT et al. Clin. Trials. 2014;11:532-546.

Primary Outcome and Primary Hypothesis

Primary outcome

- CVD composite: first occurrence of
 - Myocardial infarction (MI)
 - Acute coronary syndrome (non-MI ACS)
 - Stroke
 - Acute decompensated heart failure (HF)
 - Cardiovascular disease death
- Primary hypothesis*
 - CVD composite event rate lower in intensive compared to standard treatment

- based on recruitment of 9,250 participants, 4-6 years of follow-up and loss to follow-up of 2%/year.

^{*}Estimated power of 88.7% to detect a 20% difference

Additional Outcomes

- All-cause mortality
- Primary outcome + all-cause mortality
- Dementia / Mild Cognitive Impairment
- Brain MRI for small vessel ischemic disease
- Renal:
 - ➤ Main secondary outcome
 - Participants with CKD at baseline: ≥50% decline in eGFR or ESRD
- Health-related quality of life assessments
- Outcomes in subgroups

Pre-specified Subgroups of Special Interest

Age (<75 vs. ≥75 years)

Gender (Men vs. Women)

Race/ethnicity (African-American vs. Non African-American)

• CKD (eGFR <60 vs. ≥60 mL/min/1.73m²)

CVD (CVD vs. no prior CVD)

• Level of BP (Baseline SBP tertiles: ≤132, 133 to 144, ≥145 mm Hg)

BP Intervention

- BP monitored monthly for 3 months and every 3 months thereafter (additional visits could be scheduled)
- Antihypertensive medication titration decisions based on seated visit BP, using a structured stepped-care approach
- Agents from all major antihypertensive drug classes available free of charge
 - Classes with best CVD outcomes in trials given priority
 - Chlorthalidone encouraged as thiazide-type diuretic
 - Amlodipine encouraged as CCB
- Periodic assessment for orthostatic hypotension and related symptoms and measured serum electrolytes and renal function

Blood Pressure Measurement in SPRINT

- Similar to what has been used in virtually all HTN outcome trials.
- Similar to what has been recommended for clinical practice by virtually <u>all</u>
 HTN guidelines
- SPRINT Blood Pressure Measurement Procedures
 - ➤ SPRINT BP was the average of 3 BP measurements obtained using an automated measurement device (Omron 907XL) after a **5 minute** rest period.
 - >Appropriate cuff size was determined by measuring arm circumference.
 - ➤ Participant was seated with back supported and arm bared and supported at heart level.
 - ➤ Omron Device was set to delay 5 minutes and then take/average 3 BP measurements, during which time participants refrained from talking or texting.

SPRINT Intensive Intervention

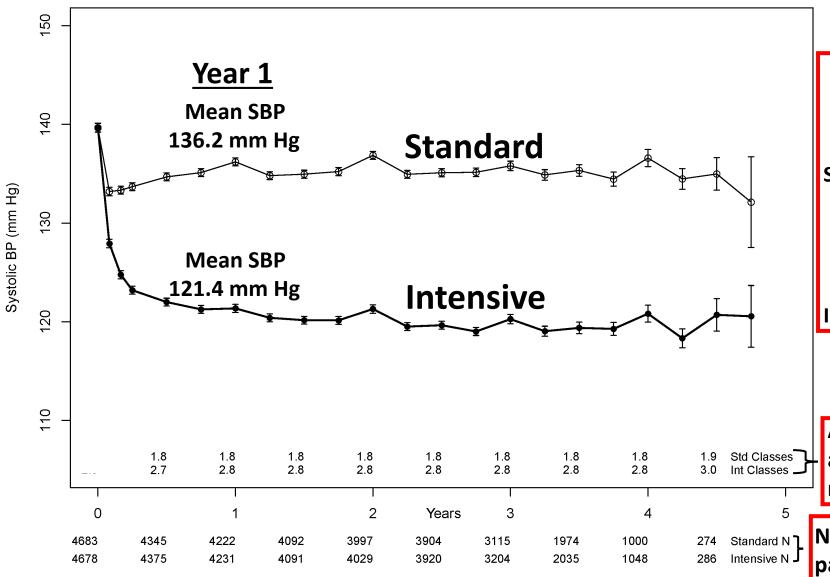
- Initiate therapy with at least 2 drugs senior participants on 0-1 drugs could be started on 1 drug
- BP medications were added and/or titrated at monthly visits to achieve SBP <120 mm Hg
- Intervention goal was to create a minimum mean difference between randomized groups of at least 10 mm Hg

SPRINT Inclusion/Exclusion Criteria

- Age: ≥50 years old
- BP: systolic blood pressure: 130–180 mm Hg (treated or untreated)
- Additional cardiovascular disease (CVD) risk
 - Clinical or subclinical CVD (excluding stroke)
 - Chronic kidney disease (CKD), defined as eGFR 20–59 ml/min/1.73m²
 - Framingham Risk Score for 10-year CVD risk ≥ 15%
 - Age ≥75 years
- Exclude for:
 - Stroke, diabetes mellitus, polycystic kidney disease, heart failure
 - Proteinuria >1g/d
 - CKD with eGFR <20 mL/min/1.73m² (MDRD)
 - Adherence concerns
 - Residing in nursing home or dementia Dx

Clin. Trials. 2014;11:532-546

N Engl J Med. 2015;373:2103-16


SPRINT: Selected Baseline Characteristics

	Total
	N=9361
Mean age	68 years
≥75 years	28%
Female	36%
White	58%
African-American	30%
Hispanic	11%
Prior CVD	20%
Prior CKD	28%
Mean 10-year Framingham CVD risk	24%
Taking antihypertensive meds	91%
Mean number of antihypertensive meds	1.8
Mean Baseline BP, mm Hg	140/78

Clin. Trials. 2014;11:532-546

N Engl J Med. 2015;373:2103-16

Systolic BP During Follow-up

Average SBP

(During Follow-up)

Standard: 134.6 mm Hg

Delta: 13.5 mm Hg

Intensive: 121.5 mm Hg

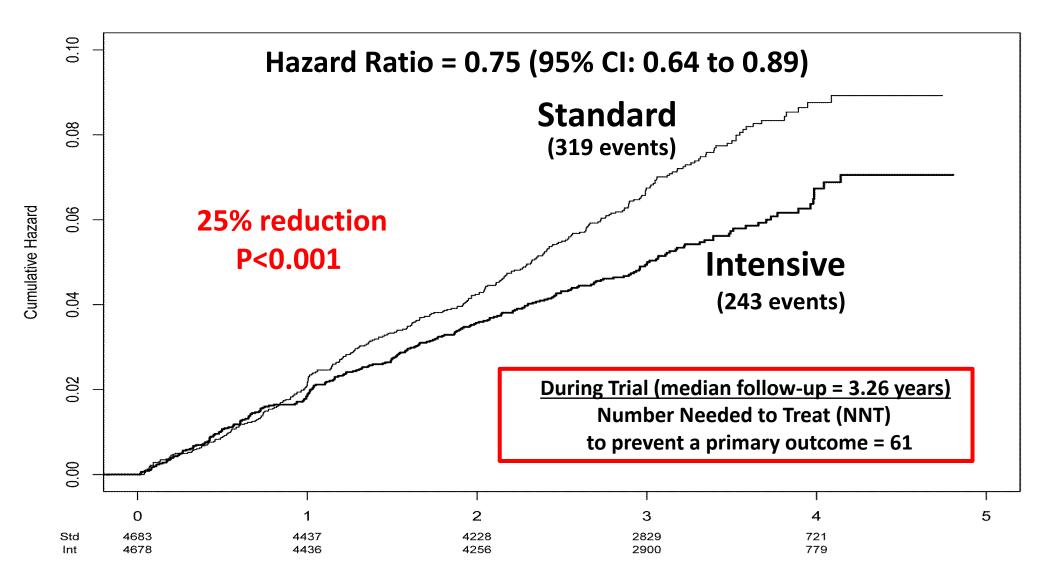
Average number of antihypertensive medications

Number of participants

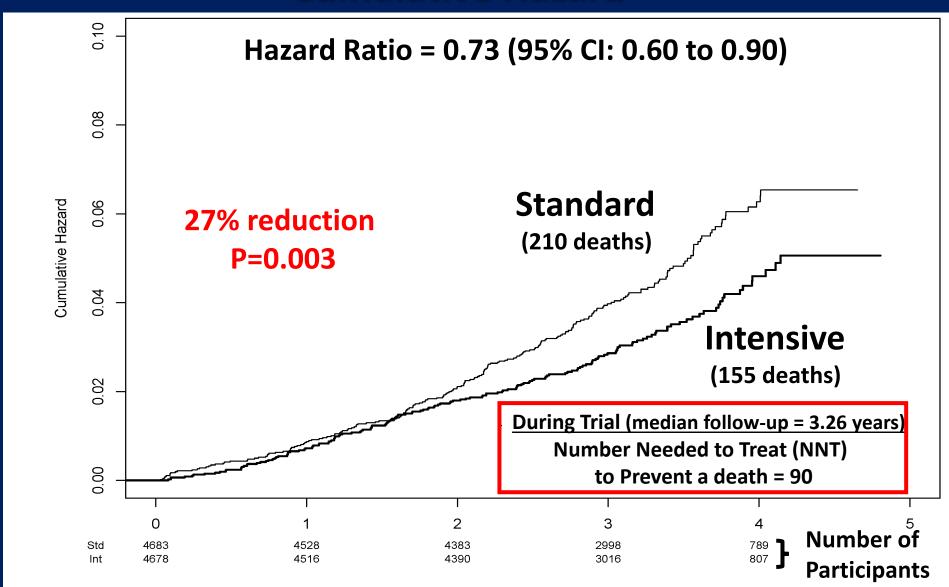
Medication Classes by Treatment Group

Last Visit Per Participant Prior to 8/20/2015

3 major classes were used 22-24% more often in Intensive than Standard Group, but pattern of drug class usage was similar.



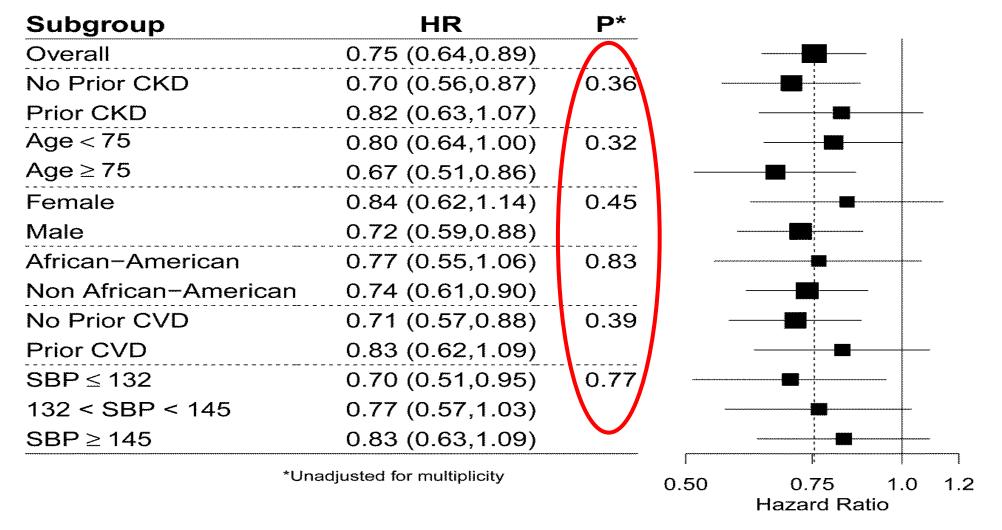
Decision to Stop BP Intervention


- On August 20, 2015, NHLBI Director (Dr. Gary Gibbons) accepted the DSMB recommendation to inform SPRINT investigators and participants of CVD results
- Concurrently, decision made to stop BP intervention and return BP care to PCP
- Blinded data for secondary non-CVD outcomes (e.g., dementia and cognitive impairment) continued to be collected

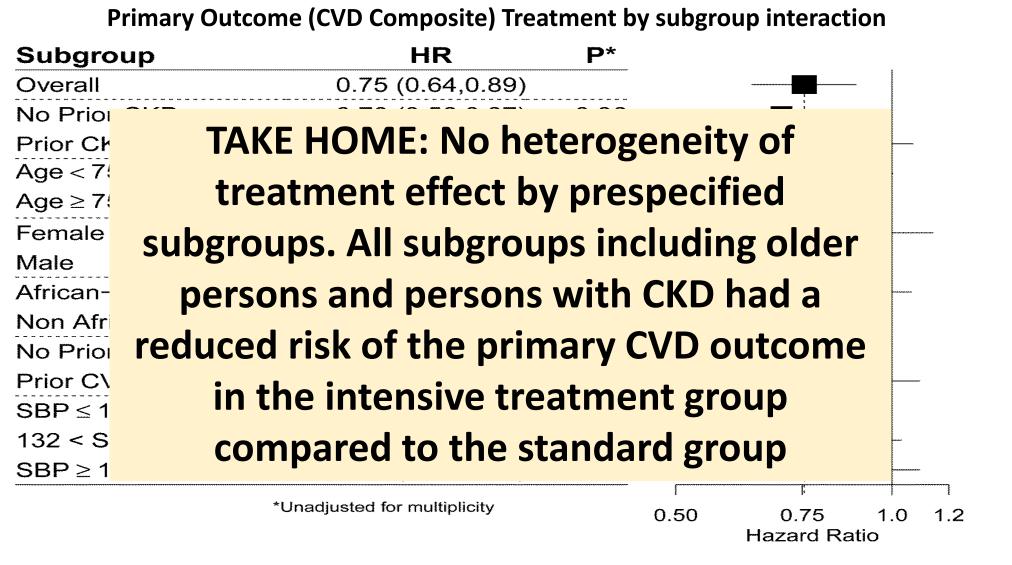
SPRINT Primary Outcome (CVD) Cumulative Hazard

The SPRINT Research Group. N Engl J Med. 2015;373:2103-16

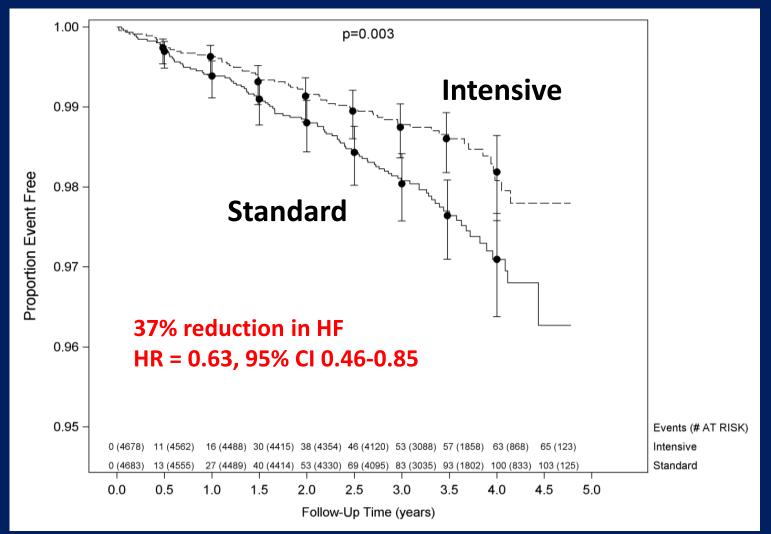
All-cause Mortality Cumulative Hazard



The SPRINT Research Group. N Engl J Med. 2015;373:2103-16


Experience in the Six Pre-specified Subgroup Populations of Interest

Primary Outcome (CVD Composite) Treatment by subgroup interaction


Experience in the Six Pre-specified Subgroup Populations of Interest

The SPRINT Research Group. N Engl J Med. 2015;373:2103-2116

Kaplan-Meyer curves for the SPRINT Acute Decompensated Heart Failure Outcome by Treatment Group

- Intensive treatment group had a 37% reduced risk of ADHF
- NNT to prevent ADHF = 130
- Participants who developed ADHF had markedly increased risk of subsequent cardiovascular outcomes

Subsequent Clinical Outcomes Based on Initial ADHF Occurrence

Outcome	No ADHF (n=9193) N (%)	ADHF (n=168) N (%)	Hazard Ratio (95% CI)	P Value
Death from any cause, n (%)	323 (3.5)	44 (26.2)	9.5 (6.7-13.1)	<0.001
Death from cardiovascular causes, n (%)	79 (0.9)	26 (15.5)	26.8 (16.2-43.0)	<0.001
Myocardial infarction, n (%)	180 (2.0)	38 (22.6)	15.7 (9.9-24.0)	<0.001
Non-MI acute coronary syndrome, n (%)	75 (0.8)	7 (4.2)	9.9 (3.7-21.6)	<0.001
Stroke, n (%)	122 (1.3)	16 (9.5)	4.0 (1.4-8.8)	0.003

Data are adjusted for treatment arm, sex, baseline age (in years), baseline chronic kidney disease, and baseline cardiovascular disease. ADHF was a time-dependent covariate in these models. ADHF indicates acute decompensated heart failure; and CI, confidence interval.

1º and 2º Outcomes: First Occurrence During Trial Intervention Period

All Participants	Intensive (N=4678) % per year	Standard (N=4683) % per year	HR (95% CI)		
Primary outcome	1.77	2.40	0.73 (0.63-0.86)		
Primary (w/out HF)	1.48	1.97	0.75 (0.63-0.89)		
Secondary Outcomes					
MI	0.68	0.93	0.72 (0.56-0.93)		
ACS	0.28	0.27	1.02 (0.66-1.57)		
Stroke	0.45	0.52	0.89 (0.64-1.23)		
Heart failure	0.45	0.70	0.63 (0.46-0.86)		
CVD Death	0.27	0.47	0.58 (0.39-0.84)		
Death – any cause	1.06	1.41	0.75 (0.61-0.92)		

1º and 2º Outcomes: First Occurrence During Trial Intervention Period

All Particip	ants	Intensive (N=4678) Standard (N=4683) % per year % per year		HR (95% CI)	
Primary ou	tcome	1.77	2.40	0.73 (0.63-0.86)	
Primary (w	out HF)	1.48	1.97	0.75 (0.63-0.89)	
Secondary O	TAKE	HOME: Intensiv	e Beat Standard		
MI	for	1º Composite C	10 Composite CVD Outcome,		
ACS	Includ	ding and Excludi	ing and Excluding Heart Failure		
Stroke		0.45	0.89 (0.64-1.23)		
Heart fail	ure	0.45	0.63 (0.46-0.86)		
CVD Deat	h	0.27	0.58 (0.39-0.84)		
Death – a	ny cause	1.06	1.41	0.75 (0.61-0.92)	

Number (%) of Participants with a Monitored Clinical Measure During Follow-up

	Number (%) of Participants		
	Intensive	Standard	HR (P Value)
Laboratory Measures ¹			
Sodium <130 mmol/L	180 (3.9)	100 (2.2)	1.76 (<0.001)
Potassium <3.0 mmol/L	114 (2.5)	74 (1.6)	1.50 (0.006)
Potassium >5.5 mmol/l	176 (3.8)	171 (3.7)	1.00 (0.97)
Signs and Symptoms			
Orthostatic hypotension ²	777 (16.6)	857 (18.3)	0.88 (0.013)
Orthostatic hypotension+dizziness	62 (1.3)	71 (1.5)	0.85 (0.35)

^{1.} Detected on routine or PRN labs; routine labs drawn quarterly for first year, then q 6 months

^{2.} Drop in SBP ≥20 mm Hg or DBP ≥10 mm Hg 1 minute after standing (measured at 1, 6, and 12 months and yearly thereafter) in the SPRINT clinic

Primary CVD Outcomes, Mortality, and Kidney Outcomes in Persons with CKD at Baseline

With CKD at Baseline	Intensive (N = 1330) # Events (% per year)	Standard (N = 1316) # Events (% per year)	HR (95% CI)
50% Decline eGFR, dialysis, or kidney transplantation	10 (0.25)	12 (0.31)	0.79 (0.34-1.83)
Incident albuminuria	63 (3.93)	85 (5.61)	0.71 (0.50-1.00)
1 ⁰ CVD Outcome or All-Cause Death	152 (3.62)	179 (4.35)	0.82 (0.66-1.02)
1 ⁰ CVD Outcome	112 (2.68)	131 (3.19)	0.81 (0.63-1.05)
Death Any Cause	70 (1.61)	95 (2.21)	0.72 (0.53-0.99)

No significant between group difference in the Renal Composite outcome in persons with CKD but there were very few events

Primary CVD Outcomes, Mortality and Kidney Outcomes in Persons without CKD at Baseline

Without CKD at Baseline	Intensive (N=3326) # Events (Events per 100 P-Y)	Standard (N=3335) # Events (Events per 100 P-Y)	HR (95% CI) per 100 P-Y
Incident CKD	140 (1.33)	40 (0.37)	3.54 (2.50-5.02)
1 ⁰ CVD Outcome or All-Cause Death	189 (1.78)	264 (2.51)	0.71 (0.59-0.86)
1º CVD Outcome	136 (1.28)	202 (1.92)	0.67 (0.54-0.84)
All-Cause Death	83 (0.77)	114 (1.05)	0.74 (0.55-0.98)

Asymptomatic Incident CKD (30% reduction in eGFR to less than 60) was more common in the intensive treatment group than the standard group but neither group had to have long-term dialysis or received a kidney transplant

Primary Outcomes, Mortality and Kidney Outcomes in Persons without CKD

Without CVD Intensive (N=3326) Standard (N=3335) HP (95% CI)

IP (95% CI) Absolute

TAKE HOME: Persons with and without CKD had a reduced risk of the 1° CVD Composite Outcome and reduced risk of Death in the intensive group compared to the standard group

Intensive SBP lowering did have an increased risk for asymptomatic incident CKD events, but this is outweighed by CVD and Death benefits

SPRINT

Springs Adverse Events* (SAF) During Follow-up

Serious Auverse Lvein		Juling i C	mow-up
	Number (%) o	f Participants	HR (P Value)
	Intensive	Standard	

1793 (38.3) 1736 (37.1) All SAE reports (no different in age ≥75 yrs)

Syncope Injurious fall (no different in age ≥75 yrs)

Acute kidney injury or acute renal failure

Electrolyte abnormality

Bradycardia

105 (2.2) 87 (1.9)

SAEs associated with Specific Conditions of Interest Hypotension

110 (2.4) 107 (2.3)

144 (3.1)

193 (4.1)

1.04 (0.25)

1.67 (0.001)

1.33 (0.05)

0.95 (0.71)

1.19 (0.28)

1.35 (0.020)

1.66 (<0.001)

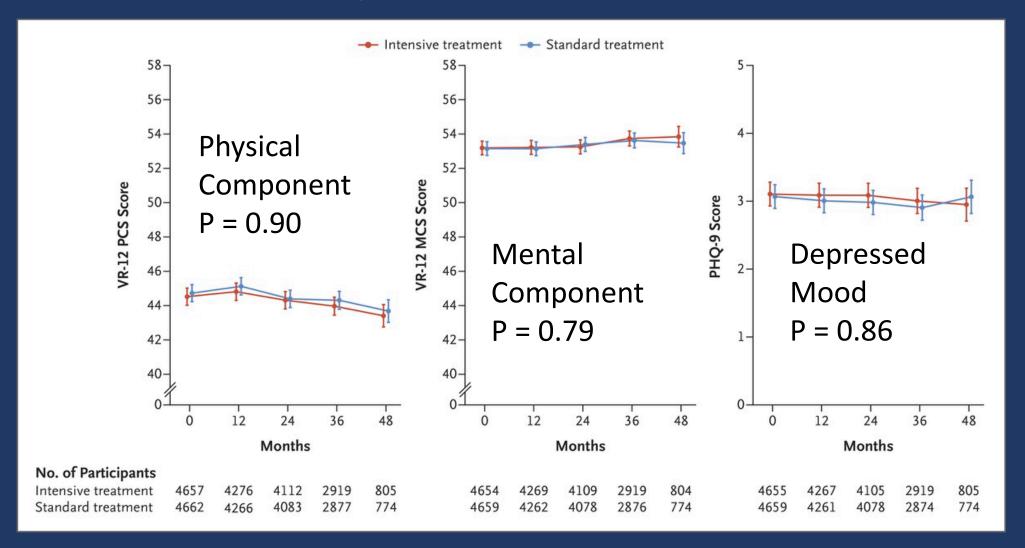
66 (1.4)

80 (1.7)

110 (2.3)

73 (1.6)

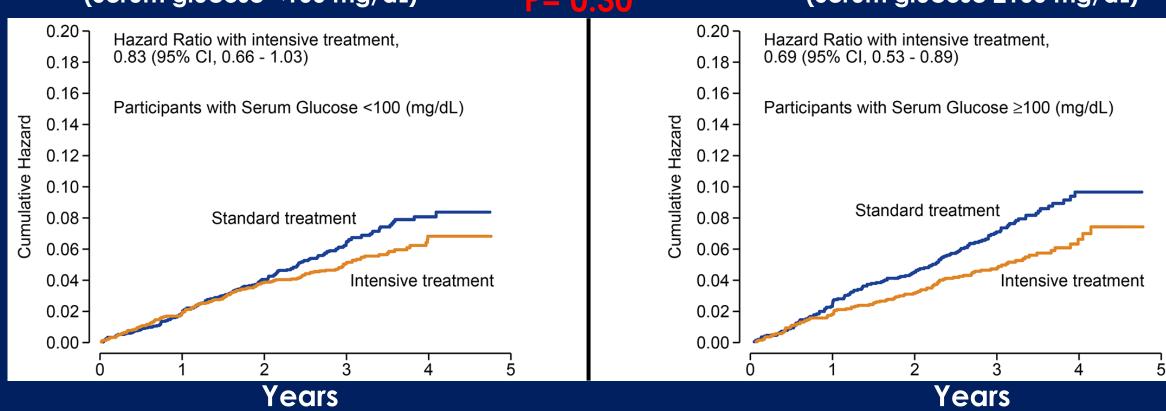
107 (2.3)


117 (2.5)

Acute Kidney Serious Adverse Events in SPRINT

- AKI (ER or hospitalization) was collected as part of SAE reporting in SPRINT.
- Post hoc, all cases of AKI were adjudicated by Nephrologists.
- For participants with sufficient data, complete or partial resolution of AKI was seen more frequently observed in the intensive group than the standard group.
- More intensive BP lowering resulted in more frequent episodes of AKI SAEs - most cases were mild, most cases appeared to be related dehydration, and most participants had complete recovery of kidney function.

Health Related Quality of Life and Depressed Mood Outcomes



No difference in physical function, mental function and depressed mood between the intensive and standard groups

Primary CVD Outcome Benefits of Intensive Treatment Are Similar in Prediabetes and Normoglycemia

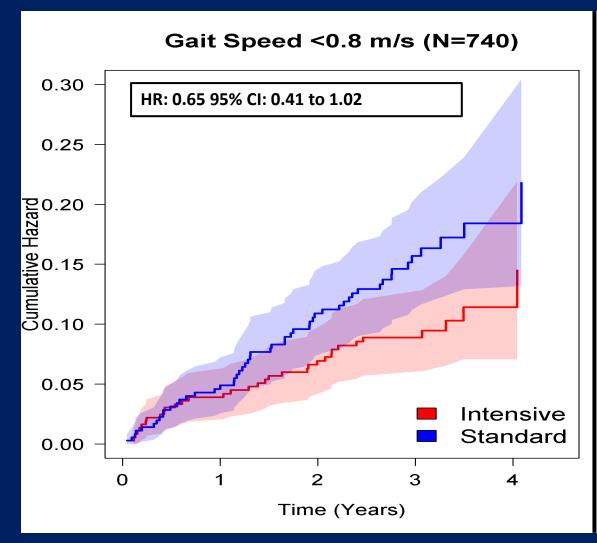
Normoglycemia (n=5,425, 58%) (Serum glucose <100 mg/dL) Interaction P= 0.30

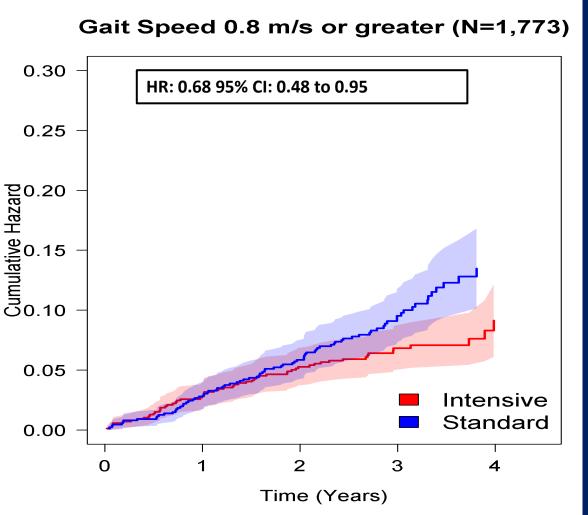
Prediabetes (n=3,898, 42%) (Serum glucose ≥100 mg/dL)

Outcomes in Participants Age 80+

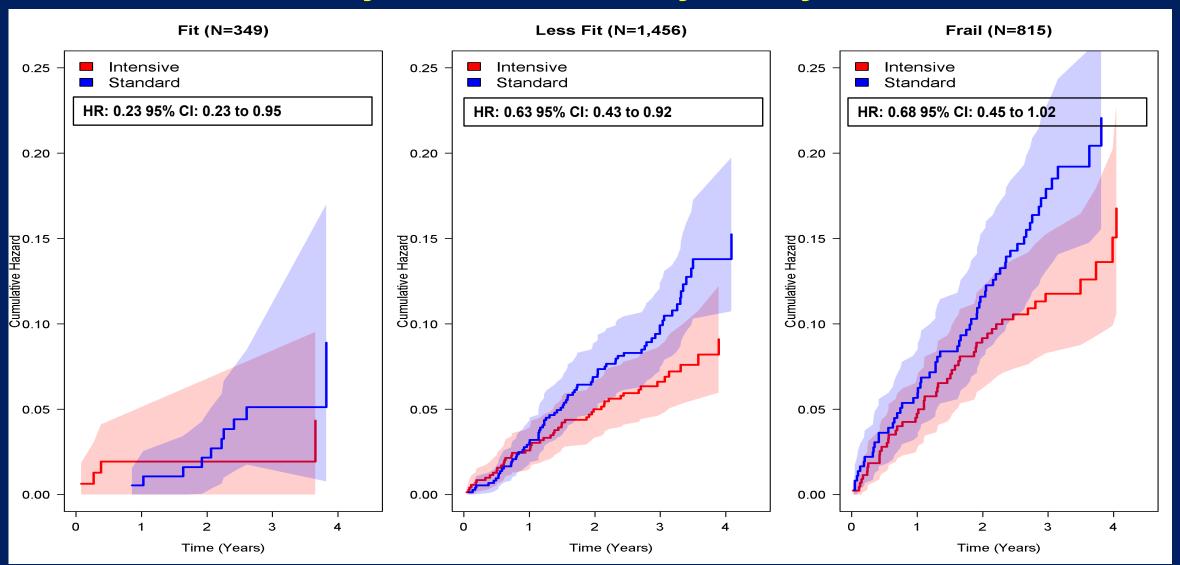
	Intensive (N/CIF) N = 586	Standard (N/CIF) N = 581	HR (95% CI)	P interaction
1º CVD Outcome				
Overall	75/0.13	106/0.18	0.67 (0.50-0.90)	
MoCA higher	37/0.11	72/0.19	0.49 (0.33-0.73)	0.01
MoCA lower	35/0.16	34/0.16	1.04 (0.65-1.66)	
1º CVD Outcome +	Death			
Overall	111/0.20	152/0.25	0.65 (0.51-0.83)	
MoCA higher	47/0.13	106/0.27	0.40 (0.28-0.57)	<0.001
MoCA lower	60/0.31	46/0.23	1.33 (0.87-2.03)	

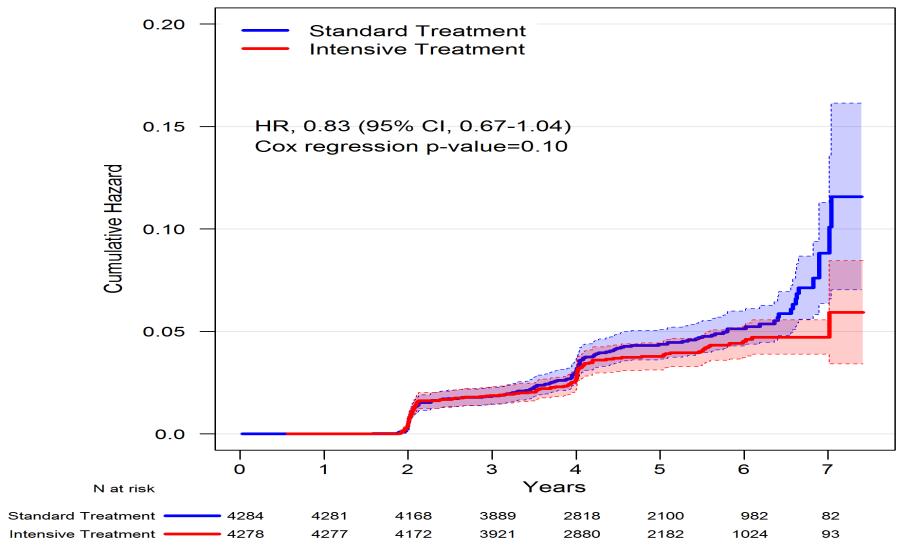
CIF = Cumulative incidence over FU




Outcomes in Participants Age 80+

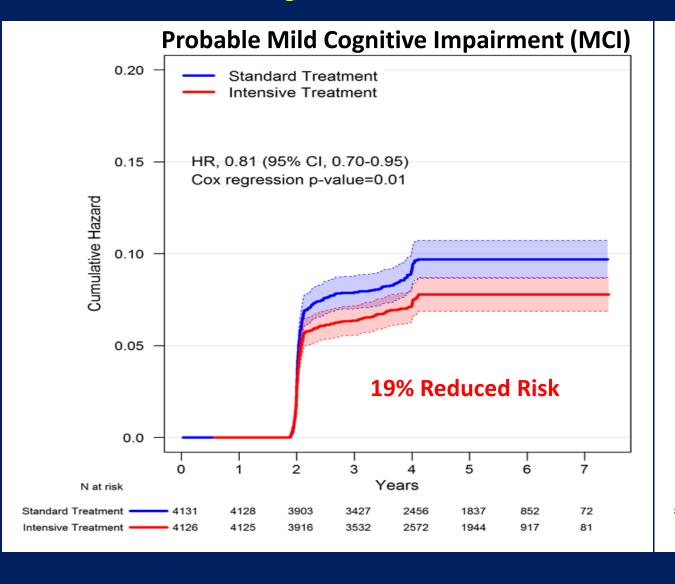
	Intensive (N/CIF) N = 586	Standard (N/CIF) N = 581	HR (95% CI)	P interaction	
1º Outcome					
Overall	75/0.13	106/0.18	0.67 (0.50-0.90)		
TAKE HO	TAKE HOME: Intensive BP treatment may not have the				
Bene	efit for those	persons who	are Age 80+	- with	
1º O		•			
Lower Baseline Cognitive Function					
MoCA higher	47/0.13	106/0.27	0.40 (0.28-0.57)	<0.001	
MoCA lower	60/0.31	46/0.23	1.33 (0.87-2.03)		

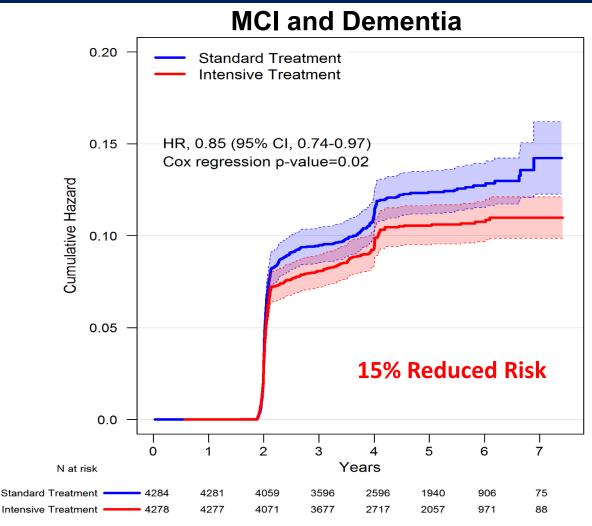

Cumulative Hazards for SPRINT Primary CVD Outcome by Gait Speed



Cumulative Hazards for SPRINT Primary CVD Outcome by Frailty Status

Adjudicated Probable Dementia by Treatment Group

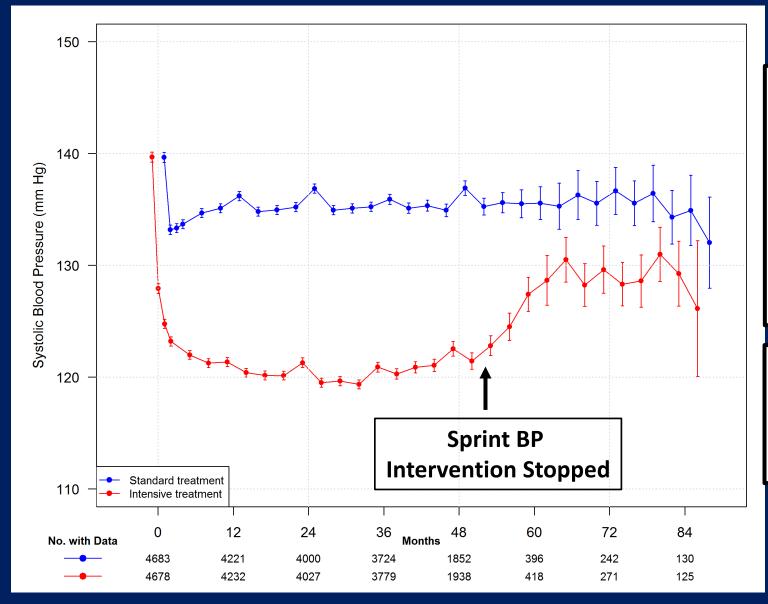



No difference between groups in probable dementia but stopping the trial early probably decreased our power to detect the dementia outcome

Adjudicated SPRINT-MIND Events

BRAIN OUTCOMES: Cognitive, White Matter Lesions, Blood Flow

Change	Intensive	Standard	Est. Difference in Change	P Value
White Matter Lesion volume (cm³), asinh	0.15 (0.11-0.19)	0.28 (0.24-0.33)	-0.13 (-0.19 to -0.07)	< 0.001
Whole Brain Cerebral Blood Flow	1.46 (0.08-2.83)	-0.84 (-2.30-0.61)	2.30 (0.30-4.30)	0.02
Gray Matter Cerebral Blood Flow	2.14 (0.41-3.87)	-0.34 (-2.17-1.48)	2.49 (-0.03-5.00)	0.05
White Matter Cerebral Blood Flow	0.65 (-0.32-1.61)	-0.83 (-1.85-0.18)	1.48 (0.08-2.88)	0.04
Periventricular White Matter Cerebral Blood Flow	0.32 (-0.54-1.17)	-0.88 (-1.80-0.04)	1.20 (-0.06-2.45)	0.06



BRAIN OUTCOMES: Cognitive, White Matter Lesions, Blood Flow

Change	Intensive	Standard	Est. Difference in Change	P Value
WML volume (em ³) 0.45 (0.44 0.40) 0.20 (0.24 0.22) 0.42 (0.40 to 0.07) asinh TAKE HOME: Intensive Beat Standard for MCI,				
Whole B Cerebral	Composite (Cognitive Outo	come;	0.02
Gray Ma Cerebral Slowe	er Increase in W	And /hite Matter L	esion volume.	0.05
			ntensive Group	0.04
Perivent White IV Cerebral Blood Flow	•	a Decrease!)		0.06

Systolic Blood Pressure Through Follow-Up

Mean Systolic Blood Pressure

Standard Treatment

135 mmHg (Intervention Period)

136 mmHg (Closeout Visits)

136 mmHg (Extended Follow-up Visits)

Intensive Treatment

122 mmHg (Intervention Period)

125 mmHg (Closeout visits)

129 mmHg (Extended Follow-up Visits)

Mean Number of Antihypertensive Medications During Intervention Period

Standard Treatment: 1.8 Intensive Treatment: 2.8

Summary and Conclusions

- SPRINT examined effects of more intensive antihypertensive therapy than currently recommended
- Rapid and sustained difference in SBP achieved between the two treatment arms
- Trial stopped early, due to <u>benefit</u>, after median follow-up of 3.33 years
- Incidence of primary outcome (composite of CVD events) 25% lower in Intensive compared to Standard Group and all-cause mortality reduced by 27%.
- Treatment effect similar in all six pre-specified groups of interest.
- The "number needed to treat" to prevent primary CVD outcome event was 61 or death was 90, respectively

Summary and Conclusions

- No overall difference in serious adverse events (SAEs) between treatment groups
- SAEs associated with hypotension, electrolyte abnormalities, acute kidney injury / failure were more common in Intensive Group. AKI events generally mild and largely reversible
- Overall, benefits of more intensive BP lowering exceeded the potential for harm
- Intensive control of BP in older people did not significantly reduce dementia (too short a follow-up period for dementia outcome?), but significantly reduced the risk of developing mild cognitive impairment, a precursor of early dementia, by 19%

Conclusions

- Significant benefit of intensive vs standard SBP lowering for
 - 10 CVD outcome and all-cause death
 - 1º CVD outcome was not dependent on heart failure
 - Brain outcomes: MCI and MCI + probable dementia; change in WML volume and improvement cerebral perfusion
- Patient health related quality of life outcomes not significantly different
- Benefits of intensive control may not extend to those age 80+ with lower baseline cognitive function

Thank you!

