Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy for Colorectal Cancer: Indications, Outcomes, and Controversies

Ian Solsky, MD, MPH Assistant Professor University of Tennessee Health Science Center

9.30.2023 | 2023 UTHSC Surgical Oncology Annual Cancer Symposium

No disclosures

Outline and Objectives

BACKGROUND

Discuss the motivation for and outcomes of cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (CRS-HIPEC)

PATIENT SELECTION

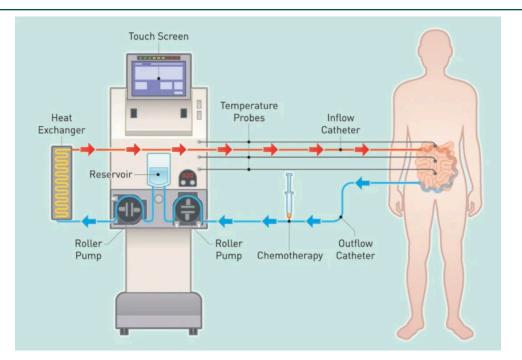
Identify eligible candidates for CRS-HIPEC

CONTROVERSIES

Review areas of controversy in the surgical management of patients with colorectal cancer (CRC) peritoneal metastases (PMs)

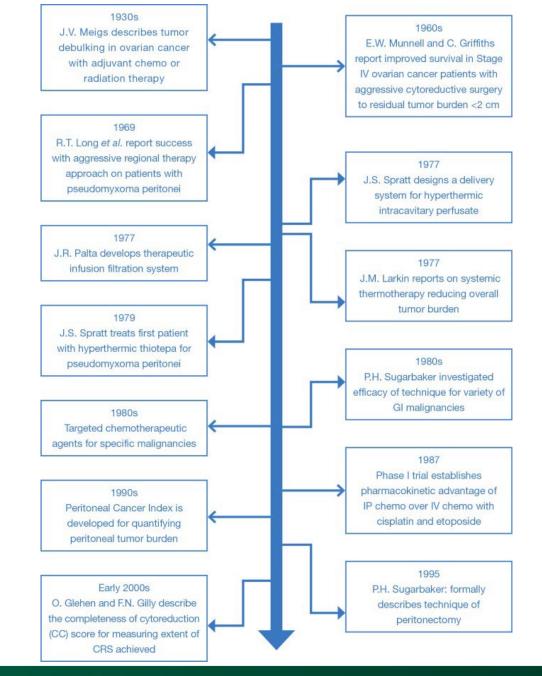
BACKGROUND

Motivation for CRS-HIPEC Historical Background The Dutch Trial 30 Years of Data



Background

- Colorectal cancer (CRC) peritoneal metastases (PMs) occur in 8-25%
- Median survival with best supportive care: 5.2 months
- Median survival with chemo alone: up to 24 months with modern agents
- Locoregional therapies like cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (CRS-HIPEC) may improve outcomes



CRS-HIPEC History

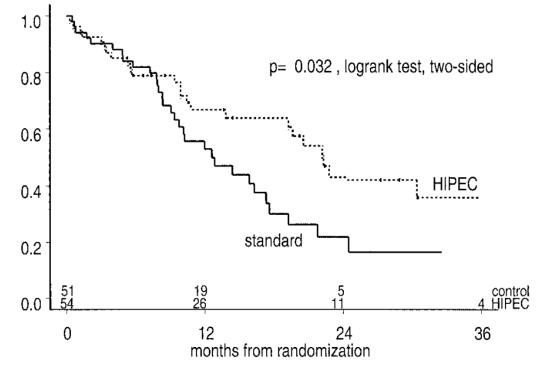
Benefits of HIPEC

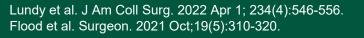
- Direct peritoneal delivery (high chemo concentrations)
 - Minimization of systemic side effects
- Hyperthermia: direct cytotoxic effects and synergism with chemo (increased drug penetration)

Neuwirth. J Gastrointest Oncol. 2016 Feb; 7(1): 18-28. HIPEC diagram from: https://physicianresources.foxchase.org/news/peritoneal-surface-malignancies

Dutch Study (1998-2001, n=105)

- CRS-HIPEC vs. chemo alone
- All patients received 5FU chemo
- HIPEC: Mitomycin C (MMC) for 90 minutes
- OS: 22.3 vs 12.6 months (p=0.032)
- OS low vs. high disease burden: 29 vs 5.4 months (p<0.0001)
- 5-year OS for ideal CRS: 45%
- 8% mortality



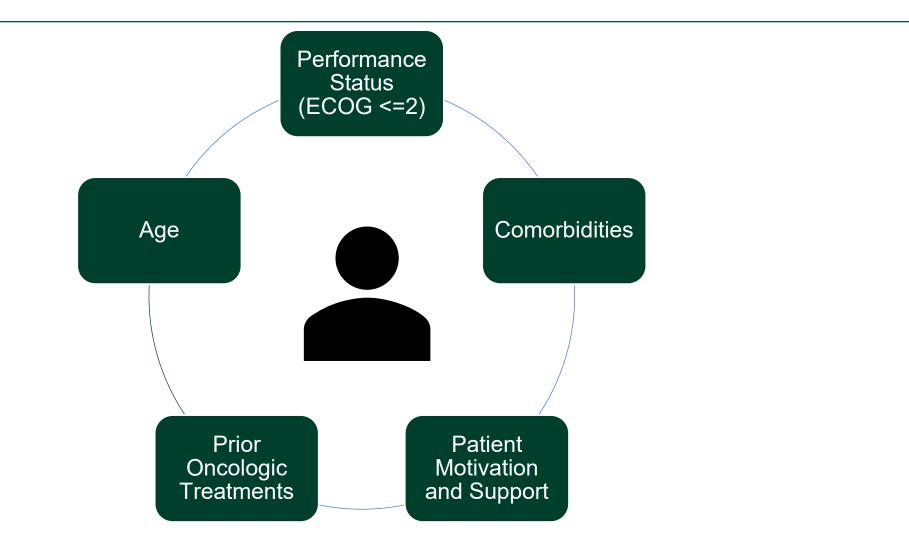

Fig 2. Kaplan-Meier survival curve, comparing standard treatment to hyperthermic intraperitoneal chemotherapy (HIPEC).

Outcomes improving over time...

	1991-2000	2001-2010	2010-2020	
Resection type	Median OS, mos, n (%)	Median OS, mos, n (%)	Median OS, mos, n (%)	p Value
Overall	13.5 (66, 100)	19.3 (139, 100)	29.1 (140, 100)	0.0082*
Complete resection	32.3 (23, <u>35)</u>	31.1 (76, <u>55)</u>	34.1 (107, <u>76)</u>	0.52
Incomplete resection	5.2 (43, 65)	14.4 (63, 45)	14.6 (33, 24)	0.041*

Table 5. Median Survival, Sample Size, and Proportions in 10-Year Intervals

...but still significant major morbidity (15.1-47.2%) and mortality (0-4.5%)



PATIENT SELECTION

Patient Variables Resectability / Burden of Disease Molecular Markers

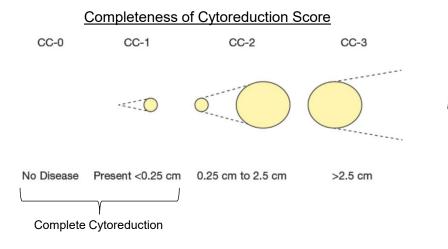
Patient Variables

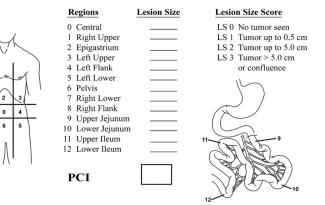
HEALTH SCIENCE CENTER.

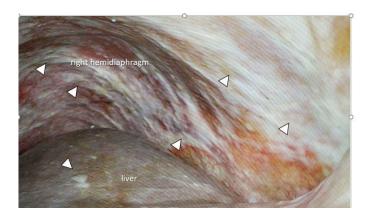
Klaver et al. Colorectal Dis. 2017;19:224-36.

Resectability / Disease Burden

Resectability


- CRS-HIPEC only if complete cytoreduction obtainable
- Complete resection: tumor nodules < 2.5mm


- Preop PCI (radiographically, laparoscopically) often underestimates disease
- No precise PCI cutoff: 12-20


Tumor Location

 Location/extent of disease may preclude resection: small bowel, porta hepatis, liver, lung

Peritoneal Cancer Index

Carignani et al. Clin Transl Oncol. 2003;5:192-198. Sugarbaker et al. Recent Results in Cancer Research. Vol. 169. Springer; 2007:1-9. ACS. Operative Standards for Cancer Surgery. Volume 3

Molecular Markers

- BRAF, RAS, MSI/MMR testing recommended for metastatic CRC
- Impact of these markers still to be determined for PMs

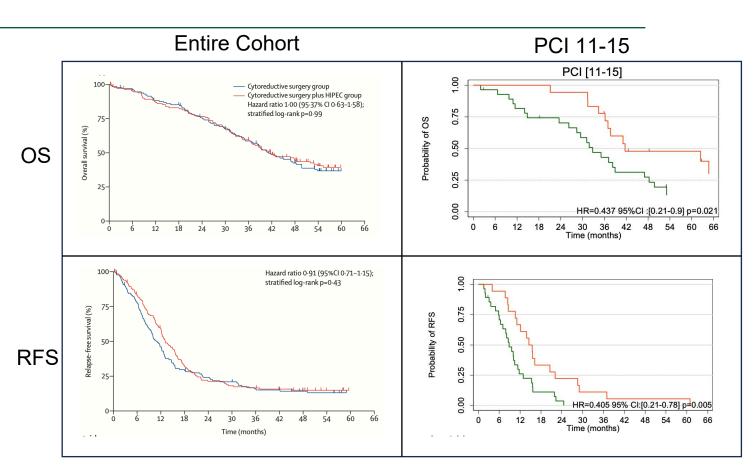
Clinical and Translational Oncology

Author N	Tumour type	Mutation, MSI status %	PFS, months MUT vs WT MSI vs MSS	OS, months MUT vs WT MSI vs MSS	Other results, months	
Massalou et al. [29] N=91	Mucinous, 38% SRC, 6%	KRAS, 44% NRAS, NR BRAF, 11% MSI, 27%	17.5 vs 11.6; <i>p</i> =0.15 NR 11.6 vs 13.6; <i>p</i> =0.54 24.9 vs 12.4; <i>p</i> =0.01	51.3 vs 35.7; $p=0.22$ NR 32.2 vs 42.2; $p=0.78$ 85.0 vs 35.7; $p=0.13$	All patients OS: 39.7 Sidedness: NR	
Schneider et al. [21] $N = 494$	Mucinous, 13% SRC, 7%	KRAS, 38% NRAS, 5% BRAF, 6% MSI, NR	NR NR NR NR	CSS 38; $p = 0.048$ CSS 49; $p = 0.700$ CSS 18; $p \le 0.001$	CSS in <i>RAS/BRAF</i> WT: 52 Sidedness: NR	
Arjona-Sanchez et al. [20] N=77	Poorly differenti- ated or SRC, 36%	<i>RAS</i> , 49% <i>BRAF</i> , NR MSI, NR	NR NR NR	27.0 vs 76.0; <i>p</i> =0.045 NR NR	All patients DFS: 16.3 All patients OS: 31.1 Sidedness: NR	
Graf et al. [30] N=111	CRC, 88% Appendiceal, 12% Mucinous, 40% SRC, 22%	<i>KRAS</i> , 46% <i>NRAS</i> , NR <i>BRAF</i> , 11% MSI, NR	NR NR NR NR	24 vs 24; $p=0.126$ NR 12 vs \approx 30; $p=0.028$ NR	Sidedness: NR	
Baratti et al. [100] N=152	Mucinous, 27% SRC, 3%	KRAS, 47%) NRAS, 5% BRAF, 7% MSI, 8%	NR NR NR NR	49.3 vs 49.7; <i>p</i> =0.710 NR 21.9 vs 49.3; <i>p</i> =0.001 44.1 vs 49.2; <i>p</i> =0.390	Right- vs left-sided tumour OS: 34.4 vs 61.2; p=0.03	
Tonello et al. [31] N=437	Mucinous, 31% SRC, 2.5%	KRAS, 46% NRAS, 3% BRAF, 6.6% MSI, 13%	11.5; p < 0.001 10.4; p = 0.01 10.5; p < 0.001 19.2 vs 14.1; p = 0.007	33.2; p = 0.00532.3; p = 0.54021.5; p = 0.01795.0 vs 41.0; p = 0.040	All patients: DFS: 13.6; OS: 42.3 Right-sided tumour patients: DFS: 12.8; OS: 32.4	

 Table 1
 Predictive and prognostic biomarkers in patients with CRC-PM

CONTROVERSIES

CRS alone vs. CRS-HIPEC


Prophylactic HIPEC

Perioperative Chemotherapy and Other Ongoing Investigations

PRODIGE7 (2008-2014, n=265)

- CRS-HIPEC vs. CRS alone
- HIPEC: oxaliplatin 360mg/m2 open (460 closed), 43°C, 30 minutes with 400 mg/m2 5-FU
- Systemic chemo for all
- Median PCI: 10 vs. 9 (p=0.50)
- CC-0: 89% vs. 92% (p=0.54)
- OS: 41.7 vs. 41.2 months (p=0.99)
- RFS: 13.1 vs. 11.1 months (p=0.43)
- PCI 11-15 with improved OS and RFS

HEALTH SCIENCE CENTER.

Cytoreductive surgery should be the cornerstone of treatment for CRC PMs!

Should HIPEC be offered?

YES

- PRODIGE7 limitations
 - Mitomycin C is superior to
 Oxaliplatin
 - 30 minute HIPEC is too short
 - OS benefit was seen in PCI11-15

NO

- PRODIGE7 results
- HIPEC adds risk w/o clear benefit
- ICARuS Trial supports PRODIGE7
 - HIPEC (40mg MMC, 100 min, 41-43C) vs. EPIC (1g/m2, FUDR, POD1-3)
 - PFS: 7.7 vs. 8.8 months (p=0.14)

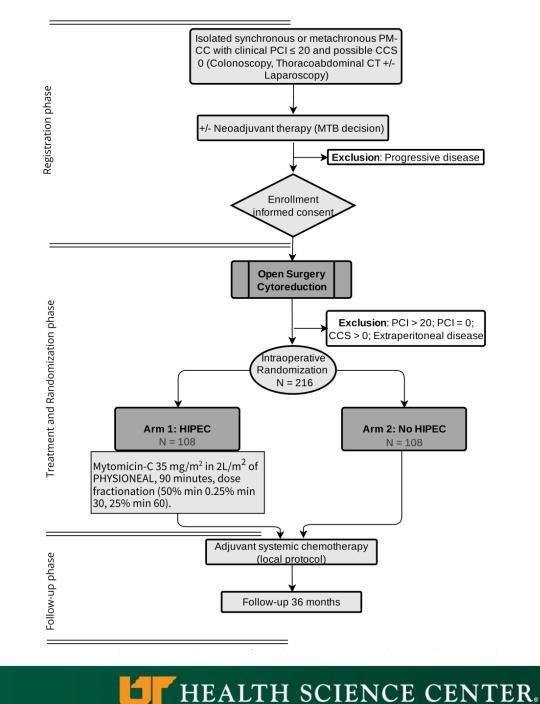
NCCN Colorectal Guidelines

"The panel currently believes that complete cytoreductive surgery and/or intraperitoneal chemotherapy **can be considered** in experienced centers for selected patients with limited peritoneal metastases for whom R0 resection can be achieved. However, the significant morbidity and mortality associated with HIPEC, as well as the conflicting data on clinical efficacy, make this approach **very controversial.**"

Impact of PRODIGE7

"Although their personal opinions of CRS-HIPEC were barely influenced by PRODIGE 7, they reported a substantial impact on daily practice."

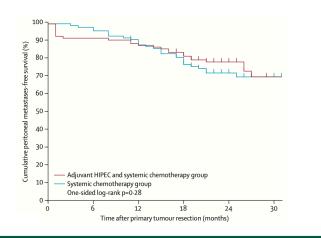
• Switch to Mitomycin-C


- Prolongation of HIPEC perfusion time
- Reduction in referrals from non-HIPEC centers
 - Reduction in national consensus
 - Removal of HIPEC from national guidelines
 - Reduced reimbursement rate

- Survey of 18 international CRS-HIPEC experts

More data needed!

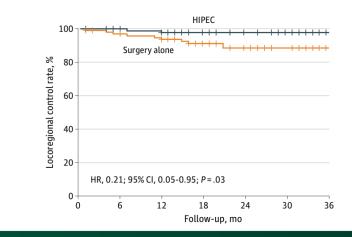
• GECOP-MMC RCT

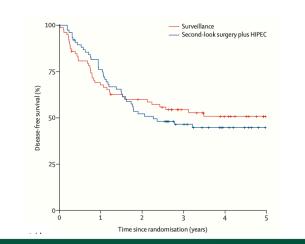

- Mitomycin C 35mg/M2, 90 min perfusion
- PCI 1-20 enrolled and CC0 only
- 31 Spanish HIPEC centers
- Primary endpoint: 3-year peritoneal RFS
- Secondary endpoint: OS, DFS, AEs, QoL

HIPEC for prophylaxis in resected CRC at high-risk of PMs?

COLOPEC (2015-2017, n=204)

- Resected perforated or T4N0-2M0
- Adjuvant HIPEC vs. surveillance
- All received adjuvant chemo
- Adjuvant HIPEC (simultaneously or within 5-8 weeks after index surgery): oxaliplatin 460mg/m2 open, 42°C, 30 minutes; 400 mg/m2 5-FU
- 18-month peritoneal metastasis-free survival: 80.9% vs 76.2% (p=0.28)
- 18-month OS: 93% vs 94.1% (p=0.82)


Arjona-Sánchez et al. JAMA Surg. 2023;158(7):683-691. Klaver et al. Lancet Gastroenterol Hepatol. 2019; 4: 761–70. Goére et al. Lancet Oncol 2020; 21: 1147–54.


PROPHYLOCHIP (2010-2015, n=150)

- Resected perforated or PMs
- 2nd look HIPEC vs. surveillance after 6 months of postop chemo
- 2nd look HIPEC: oxaliplatin, oxaliplatin
 + irinotecan, or mitomycin (neuropathy)
- 3-year DFS: 44% vs 53% (p=0.82)
- 3-year OS: 79% vs. 80% (p=NS)

HIPECT4 (2015-2021, n=184)

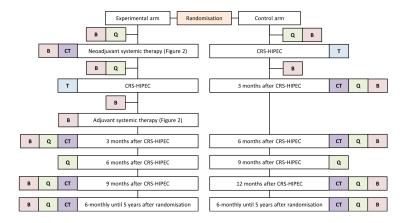
- Radiographic T4N0-2M0
- CRS-HIPEC vs. CRS alone
- Adjuvant chemo for all
- HIPEC at index operation: MMC 30mg/m2 60 min
- 3-year locoregional control (LC): 97.6% vs. 87.6% (p=0.03)
- 3-year DFS: 78% vs 81.2% (p=0.22)
- 3-year OS: 92.9% vs 91.7% (p=0.68)
- pT4 LC: 98.3% vs 82.1% (p=0.003)

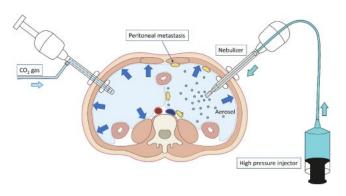
Impact of HIPECT4

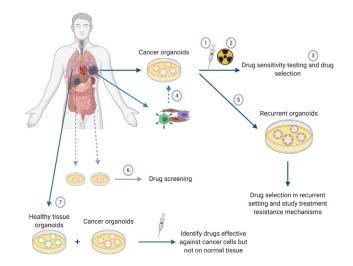
- HIPEC's role: peritoneal control
- Future trials should emphasize peritoneal PFS
- Benefits of improving peritoneal PFS:
 - Less symptoms and improved QoL
 - More time off chemotherapy
 - Fewer hospitalizations and interventions
 - Decreased disease burden may allow for salvage with iterative CRS

Trial	Arms Primary endpoint	HIPEC	Adjuvant CT	pDFS 3-yrs %	DFS 3-yrs %	Survival, %
CHECK, NCT03914820 Phase III, <i>N</i> =330 Italy, Recruiting	A: Standard surgery B: Prophylactic S + HIPEC C02 LRFS 3 years	MMC, 90 min	FOLFOX or XELOX	Pending	Pending	Pending
NCT04370925 Phase III, N=688 China, Recruiting	A: RC B: RC + HIPEC pDFS 3 years	MMC, 90 min	FOLFOX or XELOX	Pending	Pending	Pending
APEC, NCT02965248 Phase III, <i>N</i> =147 China, Recruiting	A: RC B: RC + HIPEC C: RC + HIPEC pDFS at 3 years	B: Raltitrexed, 60 min C: Oxaliplatin, 30 min	FOLFOX, XELOX or 5FU/LV	Pending	Pending	Pending
WUHIPEC02 NCT04845490 Phase II, <i>N</i> =201 China, Not yet recruiting	A: S B: S + HIPEC C: S + HIPEC pDFS at 3 years	B: MMC, 60 min C: Lobaplatin, 60 min	FOLFOX or XELOX	Pending	Pending	Pending
NCT02830139 Phase II, N=100 China, Not yet recruiting	A: S B: S+HIPEC Survival 5 years	CDDP+5FU, 60 min	XELOX	Pending	Pending	Pending
COLOPEC-II, NCT03413254 Phase III, N=389 The Netherlands, Recruiting	A: 2nd look DLS B: 2nd + 3rd look DLS % PM	NR	Permitted	Pending	Pending	Pending
NCT01628211 Phase II, $N = 140$ Italy, Recruiting	A: Standard follow- up B: 2nd look DLS Survival 2 years	NR	Permitted	Pending	Pending	Pending

HEALTH SCIENCE CENTER.


Ongoing Trials


Future Areas of Investigation


Perioperative Chemotherapy Pressurized Intraperitoneal Aerosolized Chemotherapy (PIPAC)

Patient-derived tumor organoids

CAIRO6: Phase III Trial Ongoing

Rovers et al. BMC Cancer. 2019. Apr 24;19(1):390. Alyami et al. Lancet Oncol. 2019. Jul;20(7):e368-e377. Erali et al. J Gastrointest Cancer. 2022 Nov 29. Online ahead of print.

Conclusion

<u>Objective 1</u> Discuss the motivation for and outcomes of CRS-HIPEC	 Greatest OS benefit for CRC PMs seen w/ locoregional therapy CRS +/- HIPEC + systemic chemo: 40+ months Systemic chemo alone: 24 months Supportive care: 5 months
<u>Objective 2</u> Identify eligible candidates	 Patient selection is key to good outcomes ECOG <=2, minimal comorbidities, motivated/supported CRS-HIPEC only if complete cytoreduction possible (PCI <20) Favorable tumor biology
<u>Objective 3</u> Review areas of controversy	 CRS is the mainstay of treatment for resectable CRC PMs HIPEC for PMs and ppx? Not w/ oxaliplatin but possibly with MMC CRS-HIPEC is a promising locoregional tx in mCRC armamentarium