UTHSC Surgical Oncology Annual Cancer Symposium September 30<sup>th</sup> 2023

> Bryson W. Katona, MD, PhD Director, Gastrointestinal Cancer Genetics Program Assistant Professor of Medicine Division of Gastroenterology University of Pennsylvania





#### **Disclosures**

Past consultant: Exact Sciences

Paid travel: Janssen

Clinical trial support (paid to institution): Janssen, Immunovia, Epigenomics, Guardant, Freenome, Universal Diagnostics, Recurion

Non-funded industry collaborations: Invitae, Ambry, GeneDx, Myriad





Hereditary colorectal cancer syndromes

Who should have germline testing for a hereditary colorectal cancer syndrome

Yield of germline testing in colorectal cancer

Pros and cons of universal germline testing for colorectal cancer





Hereditary colorectal cancer syndromes

Who should have germline testing for a hereditary colorectal cancer syndrome

Yield of germline testing in colorectal cancer

Pros and cons of universal germline testing for colorectal cancer





#### **Colon cancer is common**

#### Figure 3. Leading Sites of New Cancer Cases and Deaths – 2022 Estimates

| Male   |                       |         |     |  | Female                            |                      |         |     |
|--------|-----------------------|---------|-----|--|-----------------------------------|----------------------|---------|-----|
|        | Prostate              | 268,490 | 27% |  |                                   | Breast               | 287,850 | 31% |
| ses    | Lung & bronchus       | 117,910 | 12% |  |                                   | Lung & bronchus      | 118,830 | 13% |
|        | Colon & rectum        | 80,690  | 8%  |  | <b>X</b>                          | Colon & rectum       | 70,340  | 8%  |
| Ö      | Urinary bladder       | 61,700  | 6%  |  |                                   | Uterine corpus       | 65,950  | 7%  |
| Ň      | Melanoma of the skin  | 57,180  | 6%  |  |                                   | Melanoma of the skin | 42,600  | 5%  |
| ted Ne | Kidney & renal pelvis | 50,290  | 5%  |  |                                   | Non-Hodgkin lymphoma | 36,350  | 4%  |
|        | Non-Hodgkin lymphoma  | 44,120  | 4%  |  |                                   | Thyroid              | 31,940  | 3%  |
| ma     | Oral cavity & pharynx | 38,700  | 4%  |  | Pancreas<br>Kidney & renal pelvis |                      | 29,240  | 3%  |
| stir   | Leukemia              | 35,810  | 4%  |  |                                   |                      | 28,710  | 3%  |
| ш      | Pancreas              | 32,970  | 3%  |  |                                   | Leukemia             | 24,840  | 3%  |
|        | All sites             | 983,160 |     |  |                                   | All sites            | 934,870 |     |

|   | Male                           |         |     |  | Female                         |         |     |
|---|--------------------------------|---------|-----|--|--------------------------------|---------|-----|
|   | Lung & bronchus                | 68,820  | 21% |  | Lung & bronchus                | 61,360  | 21% |
|   | Prostate                       | 34,500  | 11% |  | Breast                         | 43,250  | 15% |
|   | Colon & rectum                 | 28,400  | 9%  |  | Colon & rectum                 | 24,180  | 8%  |
| • | Pancreas                       | 25,970  | 8%  |  | Pancreas                       | 23,860  | 8%  |
|   | Liver & intrahepatic bile duct | 20,420  | 6%  |  | Ovary                          | 12,810  | 4%  |
| 5 | Leukemia                       | 14,020  | 4%  |  | Uterine corpus                 | 12,550  | 4%  |
| 5 | Esophagus                      | 13,250  | 4%  |  | Liver & intrahepatic bile duct | 10,100  | 4%  |
|   | Urinary bladder                | 12,120  | 4%  |  | Leukemia                       | 9,980   | 3%  |
| 3 | Non-Hodgkin lymphoma           | 11,700  | 4%  |  | Non-Hodgkin lymphoma           | 8,550   | 3%  |
|   | Brain & other nervous system   | 10,710  | 3%  |  | Brain & other nervous system   | 7,570   | 3%  |
|   | All sites                      | 322,090 |     |  | All sites                      | 287,270 |     |

~4-5% lifetime risk of developing colon cancer

ACS, Cancer Facts and Figures, 2022

#### Familial and genetic risk for colorectal cancer



Adapted from Burt et. al., Gastroenterology, 2000

#### Hereditary colorectal cancer risk syndromes

| Gene(s) Inheritance              |              | Syndrome(s)                                                                                        | Polyp type(s)                                                                                |  |
|----------------------------------|--------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|
| Historically well-establish      | ed syndromes |                                                                                                    |                                                                                              |  |
| APC                              | AD           | Familial adenomatous polyposis<br>(FAP) or attenuated FAP<br>(AFAP)                                | Adenoma                                                                                      |  |
| MLH1, MSH2, MSH6,<br>PMS2, EPCAM | AD           | Lynch syndrome (LS)                                                                                | Adenoma                                                                                      |  |
| MUTYH (biallelic)                | AR           | MUTYH-associated polyposis (MAP)                                                                   | Adenoma, sessile serrated                                                                    |  |
| PTEN                             | AD           | PTEN hamartoma tumor<br>syndrome (PHTS), Cowden<br>syndrome, Bannayan-<br>Riley-Ruvalcaba syndrome | Hamartoma, adenoma,<br>inflammatory, hyperplastic,<br>ganglioneuroma, intramucosal<br>lipoma |  |
| SMAD4, BMPR1A                    | AD           | Juvenile polyposis syndrome<br>(JPS)                                                               | Hamartoma (juvenile type)                                                                    |  |
| STK11                            | AD           | Peutz-Jeghers syndrome (PJS)                                                                       | Hamartoma (Peutz-Jeghers type)                                                               |  |
| Newer syndromes                  |              |                                                                                                    |                                                                                              |  |
| AXIN2                            | AD           | AXIN2-associated polyposis                                                                         | Adenoma                                                                                      |  |
| GREM1                            | AD           | Hereditary mixed polyposis<br>syndrome (HMPS)                                                      | Adenoma, hyperplastic,<br>hamartomas, inflammatory,<br>and polyps of mixed subtype           |  |
| MSH3                             | AR           | MSH3-associated polyposis                                                                          | Adenoma                                                                                      |  |
| NTHL1                            | AR           | NTHL1-associated polyposis                                                                         | Adenoma                                                                                      |  |
| POLD1, POLE                      | AD           | Polymerase proofreading- Adenoma associated polyposis (PPAP)                                       |                                                                                              |  |
| RNF43                            | AD           | RNF43-associated serrated Sessile serrated, tradit polyposis syndrome serrated adenoma, h          |                                                                                              |  |
| Emerging evidence genes          |              |                                                                                                    |                                                                                              |  |

RPS20, GALNT12, MLH3

AD - autosomal dominant, AR - autosomal recessive

Long J.M...Katona B.W., Curr Treat Options Gastro, 2021

#### Hereditary colorectal cancer risk syndromes





Foda Z., Dharwadkar P., Katona B.W., *Best Pract Res Clin Gastroenterol*, 2023

Hereditary colorectal cancer syndromes

#### Who should have germline testing for a hereditary colorectal cancer syndrome

Yield of germline testing in colorectal cancer

Pros and cons of universal germline testing for colorectal cancer





- Age of CRC diagnosis
- Tumor characteristics
- History of polyps
- Family history
- Risk model score
- Date of prior genetic testing

- Age of CRC diagnosis
- Tumor characteristics
- History of polyps
- Family history
- Risk model score
- Date of prior genetic testing

All patients with colorectal cancer diagnosed before age 50 should be sent for genetic testing, regardless of family history or tumor characteristics

Stoffel et al., *Gastroenterology*, 2018

- 1 in 5 carries a germline mutation associated with cancer
- Half of patients may not have a "suspicious" family history

Seagle et al., JCO, 2023

• 12.2% with a pathogenic germline variant

- Age of CRC diagnosis
- Tumor characteristics
- History of polyps
- Family history
- Risk model score
- Date of prior genetic testing

- 1. Deficient MMR IHC not explained by MLH1 hypermethylation
- 2. MSI-H
- 3. Potential germline hit(s) on a somatic tumor sequencing panel
- 4. Possibly for ALL colorectal cancers

NCCN National Comprehensive Cancer Network<sup>®</sup> NCCN Guidelines Version 1.2023 Lynch Syndrome

CRITERIA FOR EVALUATION OF LYNCH SYNDROME AND OTHER CANCER RISK GENES AMONG INDIVIDUALS WITH A PERSONAL HISTORY OF COLORECTAL CANCER



Utilize tumor and family historybased criteria for evaluation of LS (<u>LS-1</u>) and consider germline MGPT evaluation for LS and other hereditary cancer syndromes for all individuals with CRC aged ≥50 years at diagnosis<sup>r</sup> (category 2B)

- Age of CRC diagnosis
- Tumor characteristics
- History of polyps
- Family history
- Risk model score
- Date of prior genetic testing

#### Mutations in Any Gene 10 - 19 polyps



- ≥ 10 cumulative colonic adenomas
- ≥ 2 gastrointestinal hamartomas
- ≥ 5 serrated polyps proximal to rectum
- **Duodenal** adenomas
- Advanced fundic gland polyposis

You're just not comfortable with the patient's polyp burden!

Stanich, P.P., et al., CGH, 2019

- Age of CRC diagnosis
- Tumor characteristics
- History of polyps
- **Family history**
- Risk model score
- Date of prior genetic testing

Have a relative with a known hereditary cancer risk syndrome

Have a deceased relative with a suspected hereditary cancer risk syndrome or early onset cancer

Have a family history of CRC or other Lynch syndrome-related cancers



- An individual with a LS-related cancer<sup>b</sup> and any of the following:
- I first-degree or second-degree relative with an LS-related cancer<sup>b</sup> diagnosed <50 y</li>
   ≥2 first-degree or second-degree relatives with an LS-related cancer<sup>b</sup> regardless of age
- Family history<sup>c</sup> of any of the following:
- ▶ ≥1 first-degree relative with a colorectal or endometrial cancer diagnosed <50 y</p>
- ▶ ≥1 first-degree relative with a colorectal or endometrial cancer and a synchronous or metachronous LS-related cancer<sup>b</sup> regardless of age
- ▶ ≥2 first-degree or second-degree relatives with LS-related cancers, <sup>b</sup> including ≥1 diagnosed <50 y</li>
   ▶ ≥3 first-degree or second-degree relatives with LS-related cancers<sup>b</sup> regardless of age

- Age of CRC diagnosis
- Tumor characteristics
- History of polyps
- Family history
- Risk model score
- Date of prior genetic testing

| PREMM <sup>SM</sup><br>PROBE. EMPOWER. MANIFEST. |      |                   | DANA-FARBER |  |  |
|--------------------------------------------------|------|-------------------|-------------|--|--|
|                                                  | Home | Model development | Contact     |  |  |
| м                                                |      |                   |             |  |  |

#### Lynch syndrome prediction model

MLH1, MSH2, MSH6, PMS2, and EPCAM gene mutations



Sex

○ Male

○ Female

#### Current age (years)

Has the patient had colorectal cancer?

o No

Yes

#### http://premm.dfci.harvard.edu/

- Age of CRC diagnosis
- Tumor characteristics
- History of polyps
- Family history
- Risk model score
- Date of prior genetic testing

Risk ≥ 5%  $\rightarrow$  Definitely test

Risk ≥ 2.5%  $\rightarrow$  Consider testing

- Example family:
  - Proband is a male patient with CRC at age 40
  - Family history significant for a first degree relative with CRC at age 40

Overall predicted probability of MLH1, MSH2, MSH6, PMS2, or EPCAM mutation



#### If the overall predicted probability is $\geq 2.5\%$

Referral for genetic evaluation is recommended. This may include tumor sample microsatellite instability (MSI) or immunohistochemistry (IHC) testing, genetic counseling, and/or germline genetic testing. (Kastrinos F. et al. Development and validation of the PREMM5 model for comprehensive risk assessment of Lynch syndrome. Journal of Clinical Oncology. 2017 May 10. Advance online publication. DOI: 10.1200/JCO.2016.69.6120. PREMM<sub>5</sub> JCO)

#### http://premm.dfci.harvard.edu/

- Age of CRC diagnosis
- Tumor characteristics
- History of polyps
- Family history
- Risk model score
- Date of prior genetic testing

Individuals with older (often more limited) genetic testing may be eligible for updated testing

#### Non-hamartomatous polyposis evaluation

10 years ago
APC
APC
AXIN2
RNF43

MUTYH
GREM1
MLH3

MUTYH
MSH3
POLE
POLD1

Hereditary colorectal cancer syndromes

Who should have germline testing for a hereditary colorectal cancer syndrome

Yield of germline testing in colorectal cancer

Pros and cons of universal germline testing for colorectal cancer





#### **CRC MGPT results amongst US cohorts**

| Study                            | CRC patients that got testing    | Yield of<br>PGVs | Panel size     |
|----------------------------------|----------------------------------|------------------|----------------|
| Yurgelun, <i>JCO</i> ,<br>2017   | 1058                             | 9.9%             | 25 genes       |
| AlDubayan,<br><i>AJHG</i> , 2018 | 680                              | 9.4%             | 40 genes       |
| LaDuca, <i>GIM</i> ,<br>2019     | 8907                             | 11%              | 5-49           |
| Pearlman, JCO<br>PO, 2021        | 3300 (1462 got<br>testing [44%]) | 7.1%             | 25-66<br>genes |
| Uson, <i>CGH</i> ,<br>2022       | 361                              | 15.5%            | 84 genes       |

#### **CRC MGPT results amongst US cohorts**

| Study                                    | CRC patients that got testing    | Yield of<br>PGVs | Panel size     | # Centers    | % White | # Non-White participants |
|------------------------------------------|----------------------------------|------------------|----------------|--------------|---------|--------------------------|
| Yurgelun, <i>JCO</i> ,<br>2017           | 1058                             | 9.9%             | 25 genes       | 1            | 88.8%   | 107                      |
| AlDubayan,<br><i>AJHG</i> , 2018         | 680                              | 9.4%             | 40 genes       | 1            | 98%     | 13                       |
| LaDuca, <i>GIM</i> ,<br>2019             | 8907                             | 11%              | 5-49           | Multiple     | ??      | ??                       |
| Pearlman, <i>JCO</i><br><i>PO</i> , 2021 | 3300 (1462 got<br>testing [44%]) | 7.1%             | 25-66<br>genes | 51 (1 state) | 89.3%   | 331                      |
| Uson, <i>CGH</i> ,<br>2022               | 361                              | 15.5%            | 84 genes       | 3            | 82%     | 52                       |

Therefore we need studies to determine the yield of MGPT across a large, more diverse CRC cohort

# **Methods**

#### CANCER GENETICS 6

# Multigene Panel Testing Yields High original reports **Rates of Clinically Actionable Variants Among Patients With Colorectal Cancer**

#### JCO<sup>®</sup> Precision Oncology 2022

Sarah E. Coughlin, MD<sup>1</sup>; Brandie Heald, MS<sup>2</sup>; Dana Farengo Clark, MS<sup>1</sup>; Sarah M. Nielsen, MS<sup>2</sup>; Kathryn E. Hatchell, PhD<sup>2</sup>; Edward D. Esplin, MD, PhD<sup>2</sup>; and Bryson W. Katona, MD, PhD<sup>1</sup>

- A retrospective cohort of patients • with reported CRC who underwent MGPT at a commercial laboratory between 03/2015-05/2021 (N=36,647)
- **Clinically actionable** variant in a gene associated with: •
  - **CRC or polyposis** risk
  - Another hereditary cancer syndrome with clinical management and/or therapeutic implications (other actionable)

#### Non-actionable ٠

Variant in a gene without associated clinical management or therapeutic implications (including **MUTYH** monoallelic carriers)

## **Cohort Characteristics**

| <b>TABLE 1.</b> Cohort Characteristics of Patients With CRC Undergoing           Multigene Panel Testing |               |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------|---------------|--|--|--|--|--|--|
| Characteristic                                                                                           | N = 34,244    |  |  |  |  |  |  |
| Age at testing, years, No. (%)                                                                           |               |  |  |  |  |  |  |
| < 30                                                                                                     | 808 (2.4)     |  |  |  |  |  |  |
| 30-39                                                                                                    | 3,139 (9.2)   |  |  |  |  |  |  |
| 40-49                                                                                                    | 6,705 (19.6)  |  |  |  |  |  |  |
| 50-59                                                                                                    | 7,514 (21.9)  |  |  |  |  |  |  |
| 60-69                                                                                                    | 8,161 (23.8)  |  |  |  |  |  |  |
| 70-79                                                                                                    | 5,893 (17.2)  |  |  |  |  |  |  |
| ≥ 80                                                                                                     | 2,024 (5.9)   |  |  |  |  |  |  |
| Female sex, No. (%)                                                                                      | 20,792 (60.7) |  |  |  |  |  |  |
| Race/Ethnicity, No. (%)                                                                                  |               |  |  |  |  |  |  |
| Ashkenazi Jewish                                                                                         | 572 (1.7)     |  |  |  |  |  |  |
| Asian                                                                                                    | 1,114 (3.3)   |  |  |  |  |  |  |
| Black                                                                                                    | 2,277 (6.7)   |  |  |  |  |  |  |
| Hispanic                                                                                                 | 1,905 (5.6)   |  |  |  |  |  |  |
| Other or unknown                                                                                         | 4,194 (12.2)  |  |  |  |  |  |  |
| White                                                                                                    | 24,182 (70.6) |  |  |  |  |  |  |

| Number of genes tested, No. (%) |               |  |  |  |  |  |
|---------------------------------|---------------|--|--|--|--|--|
| 11-20                           | 4,706 (13.7)  |  |  |  |  |  |
| 21-30                           | 3,613 (10.6)  |  |  |  |  |  |
| 31-40                           | 1,597 (4.7)   |  |  |  |  |  |
| 41-50                           | 11,243 (32.8) |  |  |  |  |  |
| 51-80                           | 3,027 (8.8)   |  |  |  |  |  |
| > 80                            | 10,058 (29.4) |  |  |  |  |  |
|                                 |               |  |  |  |  |  |

# **MGPT Results**

**TABLE 2.** Type and Number of Variants Identified by Multigene Panel

Testing

Variant

N = 34,244, No. (%) Patients with any PGV identified 4,864 (14.2) 4,059 (11.9) Clinically actionable CRC/polyposis 3,111 (9.1)

| Other actionable               | 1,048 (3.1)   |
|--------------------------------|---------------|
| Nonactionable                  | 952 (2.8)     |
| PGV per patient                |               |
| 1                              | 4,146 (12.1)  |
| 2                              | 441 (1.3)     |
| 3                              | 20 (0.06)     |
| > 3                            | 1 (0.00)      |
| Patients with a VUS identified | 13,094 (38.2) |
| VUS and a PGV                  | 1,751 (5.1)   |
| VUS alone                      | 11,343 (33.1) |
|                                |               |

#### **Pathogenic Gene Variants**



#### **Pathogenic Gene Variants**



#### **VUSs**



#### **CRC MGPT results amongst US cohorts**

| Study                                    | CRC patients that got testing    | Yield of<br>PGVs | Panel size     | # Centers       | % White | # Non-White participants |
|------------------------------------------|----------------------------------|------------------|----------------|-----------------|---------|--------------------------|
| Yurgelun, <i>JCO</i> ,<br>2017           | 1058                             | 9.9%             | 25 genes       | 1               | 88.8%   | 107                      |
| AlDubayan,<br><i>AJHG</i> , 2018         | 680                              | 9.4%             | 40 genes       | 1               | 98%     | 13                       |
| LaDuca, <i>GIM</i> ,<br>2019             | 8907                             | 11%              | 5-49           | Multiple        | ??      | ??                       |
| Pearlman, <i>JCO</i><br><i>PO</i> , 2021 | 3300 (1462 got<br>testing [44%]) | 7.1%             | 25-66<br>genes | 51<br>(1 state) | 89.3%   | 331                      |
| Uson, <i>CGH</i> ,<br>2022               | 361                              | 15.5%            | 84 genes       | 3               | 82%     | 52                       |
| Coughlin, JCO<br>PO, 2022                | 34,244                           | 14.2%            | 11-80+         | Multiple        | 70.6%   | 8141                     |

Hereditary colorectal cancer syndromes

Who should have germline testing for a hereditary colorectal cancer syndrome

Yield of germline testing in colorectal cancer

Pros and cons of universal germline testing for colorectal cancer





## Universal germline genetic testing for all CRC patients?

- **Pros** to testing all CRC patients
  - Identify CRC-risk variants
  - Identify variants that increase risk of other cancers
  - Allows cascade testing in family members
  - Rate of genetic variants found is similar to other cancers where universal testing is recommended (ie pancreatic cancer, high-risk prostate cancer)
  - MMR IHC is not perfect
  - Simplifies the referral process
  - Decrease disparities?
- Cons to testing all CRC patients
  - Cost
  - Genetic counseling and physician resources
    - ~150k new cases per year in the US, > 1 million survivors in the US
  - Management of VUSs
  - Does not add therapeutic value for CRC patients (unlike MMR IHC)
  - Increase disparities?

Hereditary colorectal cancer syndromes

Who should have germline testing for a hereditary colorectal cancer syndrome

Yield of germline testing in colorectal cancer

Pros and cons of universal germline testing for colorectal cancer





# Take home points

- ~10-15% of CRC patients who have germline genetic testing will have a PGV
- Many PGVs identified are not in classic CRC risk genes, but may have important implications
- Criteria for testing CRC patients is expanding
- Universal testing for all CRC patients is likely not far down the road





# Thank you!



www.pennmedicine.org/GICancerGenetics



bryson.katona@pennmedicine.upenn.edu

