

Real world applications for ctDNA in colorectal cancer

MDAnderson Cancer Center Van Morris, M.D., Associate Professor, Dept of Gastrointestinal Medical Oncology

September 30, 2023

<u>Research Funding</u> (to MD Anderson): Bristol Myers Squibb, Pfizer, EMD Serono, Novartis, BioNTech, Bicara, RedX Pharma

Consulting: Bayer, Regeneron, Novartis

Principal Investigator for ctDNA trials: NRG-GI005 (overall PI), BioNtech (MDACC PI)

Before a Houstonian, forever a Memphian...

Overview

• Use of ctDNA as a tool to inform cancer biology as a liquid biopsy

• Informing clinical decision making of CRC using ctDNA technologies

 Recognizing micrometastatic CRC as a unique biologic entity with novel therapeutic opportunities to cure more patients

• Use of ctDNA as a tool to inform cancer biology as a liquid biopsy

• Informing clinical decision making of CRC using ctDNA technologies

• Recognizing micrometastatic CRC as a unique biologic entity with novel therapeutic opportunities to cure more patients

Circulating tumor DNA as a "liquid biopsy"

- Circulating tumor DNA (ctDNA) can be detected in blood following release from tumor cells, predominantly via apoptosis.
- Different fragment size for ctDNA: unlike cfDNA fragments [~(167)_n bp in length], ctDNA fragments are ~20-30 bp shorter
- "Real-time" analysis: half-life of ctDNA in plasma ~ 2-3 hours

MDAnderson Cancer Center Therapeutic applications of ctDNA in management for (colorectal) cancer

Making Cancer History*

CURATIVE SETTING

a Detection of MRD

Risk stratifying:

- HIGH RISK patients in need of (better) curative therapies
- LOW RISK patients needing less toxicity

Better surveillance following curative therapies?

Tumor-agnostic cancer screening?

METASTATIC SETTING

C Guiding treatment strategies to overcome therapeutic resistance

Treatment monitoring:

- EARLY IDENTIFICATION of response to systemic therapies
 - Balance treatment response with associated toxicity
 - Gauging efficacy to neoadjuvant therapies?
- Complement radiographic findings in assessing treatment response
 - Immunotherapy in MSI-H/dMMR GI cancers

Personalizing further targeted therapies:

- Real-time, less-invasive, more comprehensive characterization of clonal evolution driving treatment resistance
 - Informing on pattern/depth of response?
 - Clinical trial eligibility

ctDNA to identify minimal residual disease: practical considerations

Different methodologies for ctDNA detection: tumor-informed vs tumor-agnostic

	TUMOR-INFORMED	TUMOR AGNOSTIC
Requires matched tumor tissue?	Yes	No
Turn-around time adequate for adjuvant chemotherapy window?	Longer	Shorter
Gene coverage	Personalized according to deep sequencing of tumor	Extensive panel including most commonly mutated genes
Correction for CHIP confounding?	Yes	Maybe

Are the ctDNA "positive" results generated reflective of the patient's underlying tumor biology, and how do we account for this in design of clinical trials (especially MRD studies)?

- Clonal hematopoiesis of indeterminate potential (CHIP) refers to the presence of somatic mutations in HSCs detected in the blood, in the absence of an associated hematologic malignancy.
- CHIP occurs more commonly with advancing age and observed especially as mutations in *DNMT3A*, *TET2*, and *AXSL1*.
- CHIP mutations in ctDNA assay have the potential to generate false positives for ctDNA study when assessing for MRD.

Co-sequencing of tumor tissue or isolated PBMCs isolated can distinguish CHIP and germline aberrations from true ctDNA.

Practical considerations necessary for ctDNA testing

Making Cancer History*

- <u>High concordance of genomic alterations between ctDNA and matched</u> tumor tissue (~80-90%), especially for driver mutations.
- WHERE matters!
- CRC liver mets are more likely to shed ctDNA
- **HOW** matters!
- Tumor informed vs tumor-agnostic assay selection: high sensitivity/specificity regardless, shorter turn-around time for tumor-agnostic ctDNA
- WHEN matters!
- Increased cfDNA/inflammatory milieu after surgical trauma can increase
 FN likelihood for MRD detection, up to ~4 weeks after surgery
- WHAT matters!
- Knowing what question you are asking when ordering the test guides your management

LIVER METASTASES ALONE

• Use of ctDNA as a tool to inform cancer biology as a liquid biopsy

• Informing clinical decision making of CRC using ctDNA technologies

 Recognizing micrometastatic CRC as a unique biologic entity with novel therapeutic opportunities to cure more patients

ctDNA detection as a prognostic biomarker in CRC

Making Cancer History*

Detection of ctDNA is a biomarker for poor prognosis across all stages of colorectal cancer.

Detection of ctDNA precedes clinical/radiographic recurrence by median ~5-6 months in CRC.

Tie J et al, Sci Transl Med 2015; Tie J et al JAMA Oncol 2019; Overman M et al ASCO 2017

Application of ctDNA towards treatment of MRD in colon cancer

Time (years)

Making Cancer History*

٠

٠

100 Patient cured by surgery alone 80 ctDNA(-) patients: UNLIKELY to recur ctDNA-negative **Opportunities** for de-escalation of Opportunities for de-escalation? standard treatments Recurrence free (%) Minimizing (unnecessary?) toxicity of treatment without 60 affecting survival outcome? All patients ctDNA-positive 40ctDNA(+) patients: LIKELY to recur Opportunities for escalation of Opportunities for escalation? standard treatments Accepting toxicity of (additional?) treatment to improve Patient not cured by 20surgery alone \rightarrow local likelihood of favorable outcome and/or metastatic disease persists 0 3 4

Is ctDNA ready for routine use in adjuvant treatment decision making following resection of stage II/III colon cancer?

DYNAMIC schema

Making Cancer History*

Stratification Factors

- T stage (T3 vs T4)
- Type of participating center (metropolitan vs regional)

Surveillance:

- CEA → 3-monthly for 24M, then 6-monthly for 36M
- CT C/A/P → 6-monthly for 24M, then at 36M

Study was designed to investigate whether a <u>ctDNA-guided approach vs standard approach</u> could reduce the use of adjuvant chemotherapy without compromising the recurrence risk for patients with stage II colon cancer.

Chemotherapy selection according to treatment approach (DYNAMIC)

Making Cancer History*

Treatment Information	ctDNA-Guided N = 294	Standard Management N = 147	P-value
Adjuvant Chemotherapy received, n	45 (15%)	41 (28%)	0.0017
Chemotherapy regimen received, n Oxaliplatin-based doublet Single agent fluoropyrimidine	28/45 (62%) 17/45 (38%)	4/41 (10%) 37/41 (90%)	<.0001
Time from surgery to commencing chemotherapy, median (IQR), days	83 (76, 89)	53 (49, 61)	<.0001
Treatment duration, median (IQR), weeks	24 (19, 24)	24 (21, 24)	0.9318
Completed planned treatment, n	38 (85%)	32 (78%)	0.7036
Percentage of full dose delivered, median (IQR)	78 (56, 100)	84 (64, 100)	0.6194
For stage II colon can LESS overa	cer, ctDNA-informed decision makir all use of chemotherapy (more DE-I	ng resulted in ESCALATION)	

- When used, MORE use of (escalated) chemotherapy

Tie J et al, NEJM 2022

DYNAMIC: association of ctDNA status with chemotherapy use

DYNAMIC: recurrence-free survival outcomes

Evaluating ctDNA kinetics qualitatively in treatment of MRD (GALAXY)

- <u>Observational</u> study evaluating changes in ctDNA from weeks 4 → 12 post-op (N=838) in patients with resected colon cancer.
- Clearance of ctDNA with adjuvant chemo was associated with improved 18-month DFS (81% vs 22%).
- Clearance of ctDNA was linked to lower total ctDNA burden at time of MRD detection:

MDAnderson Cancer Center Does chemotherapy clear ctDNA in stage II colon cancer?

ctDNA for escalation/de-escalation of chemotherapy in stage III colon cancer

ctDNA for evaluating treatment response for rectal cancer

Management of localized rectal cancer has shifted to total neoadjuvant therapy (scRT → FP/oxaliplatin), with a
goal of non-operative, "watch and wait" approach for patients with complete endoscopic and radiographic
response...

• Can we identify patients cured by TNT approach?

Does this identify patients experiencing pCR?

	Pretreatmen	t ctDNA (n=159))	Postchemoradiotherapy ctDNA (n=144)			Postoperative ctDNA (n=159)		
Variable	Positive (n=122)	Negative (n=37)	Р	Positive (n=12)	Negative (n=132)	Р	Positive (n=19)	Negative (n=140)	Р
Age, years									
Median	63	59	0.69	61	62	0.97	59	63	0.97
Range	28-85	31-86		41-86	28-86		41-86	28-86	
Sex, n (%)									
Female	40 (33)	12 (32)	1.00	4 (33)	43 (33)	1.00	6 (32)	46 (33)	1.00
Male	82 (67)	25 (68)		8 (67)	89 (67)		13 (68)	94 (67)	
Distance from anal verge (cm), n (%)									
0-5	44 (36)	13 (35)	0.77	4 (33)	48 (36)	0.79	6 (32)	51 (37)	0.01
> 5-10	55 (45)	19 (51)		5 (42)	62 (47)		5 (26)	69 (49)	
> 10	23 (19)	5 (14)		3 (25)	22 (17)		8 (42)	20 (14)	
Clinical disease stage, n (%)									
Stage II	23 (19)	12 (32)	0.11	2 (17)	29 (22)	1.00	2 (11)	33 (24)	0.25
Stage III	99 (81)	25 (68)		10 (83)	103 (78)		17 (89)	107 (76)	
Pathological T stage, n (%)									
ypT0-2	65 (53)	23 (62)	0.36	5 (42)	73 (55)	0.38	5 (26)	83 (59)	0.01
ypT3-4	57 (47)	14 (38)		7 (58)	59 (45)		14 (74)	57 (41)	
Pathological N stage, n (%)									
ypN0	91 (75)	25 (68)	0.40	6 (50)	97 (73)	0.10	10 (53)	106 (76)	0.05
ypN1-2	31 (25)	12 (32)		6 (50)	35 (27)		9 (47)	34 (24)	
Pathological complete response, n (%)									
Yes	24 (20)	10 (27)	0.36	1 (9)	28 (21)	0.46	2 (11)	32 (23)	0.37
No	98 (80)	27 (73)		11 (89)	104 (79)		17 (89)	108 (77)	
Adjuvant chemotherapy, n (%)									
Yes	40 (33)	17 (46)	0.17	4 (33)	43 (33)	1.00	11 (58)	91 (65)	0.61
No	82 (67)	20 (54)		8 (67)	89 (67)		8 (42)	49 (35)	
Recurrence at any site, n (%)									
Yes	18 (15)	5 (14)	1.00	6 (50)	15 (11)	0.003	11 (58)	12 (9)	< 0.001
No	104 (85)	32 (86)		6 (50)	117 (89)		8 (42)	128 (91)	
Site of recurrence, n (%)									
Locoregional only	3/18 (17)	0/5 (0)	1.00	0/6 (0)	3/15 (20)	0.53	1/11 (9)	2/12 (17)	1.00
Distant±locoregional	15/18 (83)	5/5 (100)		6/6 (100)	12/15 (80)		10/11 (91)	10/12 (83)	

ctDNA, circulating tumour DNA.

Adding context for assessing response to immunotherapy?

Making Cancer History*

- Anti-PD(L)1 based combinations are very effective (and curative) in patients with advanced MSI-H solid tumors like CRC.
- However, radiographic findings may "overcall" true pathologic response:

14 patients with MSI-H CRC treated with anti-PD1 +/- anti-CLTA-4 antibodies 13/14 with radiographically persistent disease

13/14 with pathologic CR at resection; 1/14 with near-pCR

Patient number	Location of primary tumor in the colon	Stage of colon cancer	Age at diagnosis, y	Sex	Deficient mismatch repair protein (by IHC)	Etiology (Lynch or s poradic)	Immuno- therapy	No. of cycles before surgery	Surgery	Intent of surgery	Pathology postresection	Best overall radiographic response
1	Transverse	IV	33	М	MSH2	Lynch	Pembro	3	Right hemicolectomy	Curative	Near pCR	SD
2	Right	IV	48	F	MLH1/PMS2	Lynch	Pembro	4	Right hemicolectomy	Palliative	pCR	SD
3	Right	III	70	F	MLH1/PMS2	Sporadic	Nivo	8	Right hemicolectomy	Curative	pCR	SD
4	Left	IV	45	Μ	MSH2/MSH6	Lynch-like	Nivo	14	Rectal stump resection and hepatic metastasectomy	Curative and palliative	pCR	PR
5	Right	IV	30	М	MSH2/MSH6	Lynch	Nivo	56	Peritoneal metastasectomy	Curative	pCR	PR
6	Left	IV	55	Μ	MSH6	Lynch	Nivo + Ipi	27	Pelvic mass metastasectomy	Palliative	pCR	PR
7	Right	IV	67	F	MLH1	Sporadic	Pembro	35	Peritoneal metastasectomy	Curative	pCR	PR
8	Left	IV	45	F	MLH1	Lynch	Pembro	16	Hepatic metastasectomy	Curative	pCR	PR
9	Right	IV	38	Μ	MSH2	Lynch	Nivo + Ipi	54	Right hemicolectomy	Curative	pCR	CR
10	Right	IV	37	Μ	MSH2/MSH6	Lynch	Nivo + Ipi	24	Ileocolectomy and peritoneal metastasectomy	Curative	pCR	SD
11	Left	IV	37	Μ	MLH1/PMS2	Lynch	Nivo+ Ipil	12	Laparoscopic jejunostomy	Palliative	pCR	SD
12	Left	IV	39	Μ	MLH1	Lynch-like	Nivo + Ipi	24	Liver metastasectomy	Curative	pCR	PR
13	Right	IV	31	Μ	MLH1	Lynch-like	Pembro	15	Liver metastasectomy	Curative	pCR	PR
14	Left	IV	59	М	MSH2/MSH6	Sporadic	Nivo + Ipi	24	Sigmoidectomy	Curative	pCR	PR

- Patient with newly diagnosed stage IV rectal cancer with oligometastatic disease to the liver presented to MDACC for further treatment.
- Molecular profiling notable for *POLE* mutation/ hypermutated status.

 Liver "metastasis" remains "stable" though patient remains without evidence of clinical, biochemical, or radiographic recurrence off treatment for > 2 years.

Are we ready to replace standard imaging for use of ctDNA to gauge curative response?

• Use of ctDNA as a tool to inform cancer biology as a liquid biopsy

• Informing clinical decision making of CRC using ctDNA technologies

Recognizing micrometastatic CRC as a unique biologic entity with novel therapeutic opportunities to cure more patients

Immune cell inclusion: specific to CRC micromets?

Making Cancer History*

- Increased TGF-β signature has been linked with <u>immune</u> <u>exclusion</u> and worse survival following atezolizumab⁷.
- As tumors grow, TGF-β drives exclusion of immune cells from tumor microenvironment in CRC preclinical models.
- Concomitant targeting of TGF-β overcomes de novo anti-PD-1 resistance.

Can clearance of TGF-β systemically prime CRC micrometastases for response to immune checkpoint blockade?

Can we utilize ctDNA technologies to identify such patients?

Targeting TGF-β and PD-L1 in patients w/ ctDNA(+) liver-limited resected met CRC

- Bintrafusp alfa is a dual TGF-β trap: anti-PD-L1 molecule safe and well tolerated in patients with advanced cancers.
- Addition of a TGF-β trap has been shown to augment sensitivity to anti-PD-1 therapies in preclinical models of CRC and melanoma².

- Eligibility criteria:
 - MSS/pMMR CRC s/p complete resection of primary tumor and all liver mets
 - Completion of all standard of care adjuvant therapy
 - No radiographic evidence of disease
 - ctDNA+ using CLIA-compliant Guardant assay collected > 14 days after treatment completion
- Primary endpoint
 - Clearance of ctDNA in >30% of patients at 12 weeks

To our knowledge, the first trial (for CRC) to use (1) ctDNA as an integral biomarker and (2) use ctDNA clearance for response evaluation.

Bintrafusp alfa for ctDNA(+) liver-limited resected met CRC: clinical outcomes

4 participants treated with bintrafusp alfa:

(A) (B) 20 (cm) **Tumor dimensions** 15-10-5 0 3 Patient Surveillance **Bintrafusp alfa** Bintrafusp alfa start end

Trial stopped early due to concern for loss of equipoise.

Biochemical progression following bintrafusp alfa: a ctDNA analysis

Patient	Mutation	Pretreatment	Post-recurrence		
		VAF (%)	VAF (%)		
	APC ^{A703fs}	0.5	0.4		
1	TP53^{P278fs}	< 0.3	0.3		
	TP53 ^{C277G}	0.4			
	TP53 ^{R196*}	0.5	65.7		
	<i>APC</i> ^{<i>R876*</i>}	< 0.3	64.7		
2	KRAS ^{G12D}	< 0.3	60.8		
	MET ^{N786fs}	0.3	< 0.3		
	MTOR ^{R206H}	< 0.3			
	BRCA2 ^{D1360Y}		0.3		
	ТР53 ^{С238Ү}	0.3	< 0.2		
	SMAD4 ^{D335G}		31.5		
	APC ^{R1450*}		23.3		
3	<i>APC</i> ^{<i>R216*</i>}		23.0		
	KRAS ^{G12D}		21.0		
	МАРК1^{Q97К}		1.2		
	STK11 ^{D330E}		0.4		
	KIT ^{R804W}		< 0.2		
4	ERBB2 ^{R288W}	< 0.2	(not tested)		

THE UNIVERSITY OF TEXAS
MD Anderson
MDAIIGEIS0II
Concor Contor
Curicer Certier

Colon

0-11

ш

Rectum

Not Specified

IV/Recurrent

Median Range

Primary Location

Pathologic Stage

of ctDNA Assays

680 (61)

389 (35)

46 (4)

260 (24)

294 (26)

561 (50)

3

1-11

Integrating post-surgical surveillance, MRD monitoring and intervention (INTERCEPT)

Making Cancer History*

1115 patients with CRC evaluated at MD Anderson between 12/2021 - 3/2023.

ctDNA results according to time from surgery for CRC (INTERCEPT)

Making Cancer History*

Dasari A et al, ASCO 2023

Distribution of ctDNA(+) status by stage and location of CRC (INTERCEPT)

Evaluations driven by ctDNA(+) status during surveillance for CRC (INTERCEPT)

Radiographic findings of CRC patients with ctDNA(+) status during surveillance (INTERCEPT)

Making Cancer History*

Dasari A et al, ASCO 2023

ctDNA treatment trials for intervention on MRD at MDACC (INTERCEPT)

More than a somatic mutation test....

- Tumor mutation burden
 - higher TMB reported for ctDNA > tissue
 - clinical context matters: can targeted therapy resistance signature overcall true TMB?
- MSI status
 - correlates w/ "gold-standard" tissue specimens improved sensitivity at higher total ctDNA level
- Fusion detection
 - Rare in patients with colorectal cancer
 - Low VAF fusion detection possible
- Methylation
 - Unique CRC methylation markers identifiable and distinguish from other cancers
 - Improved sensitivity for MRD detection in CRC
- Viral (HPV) integration
 - The power of great collaboration at MD Anderson!!

Summary

- Use of ctDNA as a tool to inform cancer biology as a liquid biopsy
 - High-performance test for detection of somatic mutations, TMB, MSI status, fusions,
- Complementing current management of CRC using ctDNA
 - Very sensitive method for reliably identifying MRD and prognosticating recurrence risk
 - Informative tool to complement standard approaches to assessing response
- Defining ctDNA as the gold standard for guiding adjuvant therapy decisions
 - De-escalation:
 - Escalation: ongoing clinical trials will inform on predictive utility
- Recognizing micrometastatic CRC as a unique biologic entity
 - Bench discoveries may translate to novel treatment approaches to cure more patients
 - INTERCEPT program for CRC: proof-of-concept for intervening on ctDNA(+) identification of MRD with novel therapeutic approaches

Acknowledgements

Dept of GI Medical Oncology

- Dr. James Yao
- Dr. Scott Kopetz
- Dr. Arvind Dasari
- Dr. Kanwal Raghav
- Dr. Christine Parseghian
- Dr. Alisha Bent
- Dr. Benny Johnson
- Dr. Pia Morelli
- Dr. Shubham Pant
- Kristin Alfaro
- Trish Jensen-Loewe
- Robert Kell
- GITT team
- Jamie Faber
- Shaelynn Riley
- Kathryn Aziz

Division of Surgical Oncology

- Dr. Tsuyoshi Konishi
- Dr. Nancy You
- Dr. Abhineet Uppal
- Dr. Timothy Newhook
- Dr. George Chang

Division of Cancer Medicine

- Dr. Chris Flowers
- Dr. Robert Wolff
- Dr. Waun Ki Hong

Division of Pathology

- Dr. Dipen Maru
- Dr. Ignacio Wistuba
- Dr. Neus Bota Rabassedas

Cancer Prevention & Research Institute of Texas

